46 research outputs found

    Spanish Validation of the Flourishing Scale in the General Population

    Get PDF
    Well-being research and its measurement have grown in the last two decades. The objective of this study was to adapt and validate the Flourishing Scale in a sample of Spanish adults. This was a cross-sectional study using a non-probabilistic sample of 999 Spanish general adult population participants. The psychometric properties of the scale were analysed from an exploratory and confirmatory perspective. Exploratory factor analysis showed a one-factor solution explaining 42.3% of the variance; an internal consistency of .846; temporal reliability correlation of .749; convergent validity with the Satisfaction with Life Scale of .521 and criterion validity with positive and negative affect (PANAS), pessimism and optimism (LOT-R) ranging from .270 to .488. Confirmatory factor analysis testing the one-factor solution showed a χ2 of 65.57 df = 20; CFI of .982, RMSEA of .06, average variance extracted index of .518 and composite reliability index of .841. Results showed that the Spanish version of the FS is a reliable and valid method for measuring high levels of well-bein

    Self-assembled honeycomb lattice in the monolayer of cyclic thiazyl diradical BDTDA (= 4,4′-bis(1,2,3,5-dithiadiazolyl)) on Cu(111) with a zero-bias tunneling spectra anomaly

    No full text
    Scanning tunneling microscopy (STM) observation reveals that a cyclic thiazyl diradical, BDTDA (= 4,4′-bis(1,2,3,5-dithiadiazolyl)), forms a well-ordered monolayer honeycomb lattice consisting of paramagnetic corners with unpaired electrons on a clean Cu(111) surface. This BDTDA lattice is commensurate with the triangular lattice of Cu(111), with the former being 3 × 3 larger than the latter. The formation of the BDTDA monolayer structure, which is significantly different from its bulk form, is attributed to an interaction with the metal surface as well as the intermolecular assembling forces. STM spectroscopy measurements on the BDTDA molecules indicate the presence of a characteristic zero-bias anomaly centered at the Fermi energy. The origin of this zero-bias anomaly is discussed in terms of the Dirac cones inherent to the honeycomb structure

    Assessment of cellular reduced glutathione content in Pseudokirchneriella subcapitata using monochlorobimane

    Get PDF
    The green alga Pseudokirchneriella subcapitata has been extensively used for the assessment of adverse impacts of pollutants. Glutathione is involved in antioxidant defence and drug detoxification. Intracellular reduced glutathione (GSH) concentration can be used as an indicator of the health of cells. This work describes a simple and fast fluorescent cell-based assay for the evaluation of intracellular GSH in the alga P. subcapitata, using monochlorobimane (mBCl). Metabolically active algal cells incubated with 50 μmol L -1 mBCl form fluorescent bimane-glutathione (B-SG) adducts that can be measured fluorometrically. The distribution of GSH (B-SG adducts) in whole cells can be observed by epifluorescence microscopy, in the form of blue fluorescent spots. Depletion of cellular GSH with iodoacetamide, inhibition of glutathione S-transferase with ethacrynic acid or heat-induced death of the cells inhibited the formation of fluorescent adducts in the presence of mBCl. The fluorometric assay, using the 96-well microplate format, was able to detect GSH depletion in algal cells. This cell-based assay can be used to evaluate decreases in GSH content due to exposure to toxicants. This assay is amenable to automation and may be useful in high-throughput toxicity screening using the alga P. subcapitata.The authors thank the Fundacao para a Ciencia e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grant PEST-OE/EQB/LA0023/2011 to IBB. Manuela D. Machado gratefully acknowledges the post-doctoral grant from FCT (SFRH/BPD/72816/2010)

    Many eyes on the ground: citizen science is an effective early detection tool for biosecurity

    No full text
    Early detection of target non-indigenous species is one of the most important determinants of a successful eradication campaign. For early detection to be successful, and provide the highest probability of achieving eradication, intense surveillance is often required that can involve significant resources. Volunteer based monitoring or “citizen science” is one potential tool to address this problem. This study differs from standard citizen science projects because the participants are personnel or contractors of a company working on Barrow Island, Western Australia. We show that personnel can contribute successfully to a surveillance program aimed at detecting a broad taxonomic range of non-indigenous vertebrate and invertebrate species. Using data collected over a five year surveillance period on Barrow Island, we show that eighteen of the nineteen (95%) non-indigenous invertebrate species new to the island were detected by personnel working on the island, and that the number of detections made by these workers was significantly related to the number of personnel on the island at any one time. Most personnel detections (91%) were made inside buildings where the majority of active surveillance tools could not be implemented. For vertebrates, 4 NIS species detections (100% of detections) were made in the built environment by personnel. Although reporting of suspect non-indigenous species is voluntary, personnel are required to attend inductions and toolboxes where reporting of suspect biosecurity risk material is encouraged. These results demonstrate the value of industry led ‘citizen science’ programs, resulting in sustained stewardship and conservation of areas with high environmental value
    corecore