635 research outputs found
Topological Surface States Protected From Backscattering by Chiral Spin Texture
Topological insulators are a new class of insulators in which a bulk gap for
electronic excitations is generated by strong spin orbit coupling. These novel
materials are distinguished from ordinary insulators by the presence of gapless
metallic boundary states, akin to the chiral edge modes in quantum Hall
systems, but with unconventional spin textures. Recently, experiments and
theoretical efforts have provided strong evidence for both two- and
three-dimensional topological insulators and their novel edge and surface
states in semiconductor quantum well structures and several Bi-based compounds.
A key characteristic of these spin-textured boundary states is their
insensitivity to spin-independent scattering, which protects them from
backscattering and localization. These chiral states are potentially useful for
spin-based electronics, in which long spin coherence is critical, and also for
quantum computing applications, where topological protection can enable
fault-tolerant information processing. Here we use a scanning tunneling
microscope (STM) to visualize the gapless surface states of the
three-dimensional topological insulator BiSb and to examine their scattering
behavior from disorder caused by random alloying in this compound. Combining
STM and angle-resolved photoemission spectroscopy, we show that despite strong
atomic scale disorder, backscattering between states of opposite momentum and
opposite spin is absent. Our observation of spin-selective scattering
demonstrates that the chiral nature of these states protects the spin of the
carriers; they therefore have the potential to be used for coherent spin
transport in spintronic devices.Comment: to be appear in Nature on August 9, 200
Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.
The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures
Reduced functional measure of cardiovascular reserve predicts admission to critical care unit following kidney transplantation
Background: There is currently no effective preoperative assessment for patients undergoing kidney transplantation that is
able to identify those at high perioperative risk requiring admission to critical care unit (CCU). We sought to determine if
functional measures of cardiovascular reserve, in particular the anaerobic threshold (VO2AT) could identify these patients.
Methods: Adult patients were assessed within 4 weeks prior to kidney transplantation in a University hospital with a 37-bed
CCU, between April 2010 and June 2012. Cardiopulmonary exercise testing (CPET), echocardiography and arterial
applanation tonometry were performed.
Results: There were 70 participants (age 41.7614.5 years, 60% male, 91.4% living donor kidney recipients, 23.4% were
desensitized). 14 patients (20%) required escalation of care from the ward to CCU following transplantation. Reduced
anaerobic threshold (VO2AT) was the most significant predictor, independently (OR = 0.43; 95% CI 0.27–0.68; p,0.001) and
in the multivariate logistic regression analysis (adjusted OR = 0.26; 95% CI 0.12–0.59; p = 0.001). The area under the receiveroperating-
characteristic curve was 0.93, based on a risk prediction model that incorporated VO2AT, body mass index and
desensitization status. Neither echocardiographic nor measures of aortic compliance were significantly associated with CCU
admission.
Conclusions: To our knowledge, this is the first prospective observational study to demonstrate the usefulness of CPET as a
preoperative risk stratification tool for patients undergoing kidney transplantation. The study suggests that VO2AT has the
potential to predict perioperative morbidity in kidney transplant recipients
Study on the growth and development of brinjal shoot and fruit borer with different diets
A laboratory experiment was conducted with two natural and one artificial diet on the growth and development of brinjal shoot and fruit borer (BSFB). The population of BSFB used in the study was in the 2nd instar larvae. Among the different diet, brinjal was the best for growth, development and longevity of larvae and pupae and prolongation of larval and pupal period. The mean length of full grown larvae fed with natural the food brinjal were 9.37, 9.80 and 12.44 mm from generations 1, 2 and 3, respectively. The larval and pupal duration on brinjal food media were 13.10 and 8.17, 12.80 and 8.23 and 13.10 and 8.03 days in generations 1, 2 and 3, respectively. The percentages of adult emergence from pupae raised in brinjal were 65.38, 47.95 and 33.78 in generations 1, 2 and 3, respectively.Key words: Brinjal, brinjal shoot and fruit borer (BSFB), natural and artificial diet
One-dimensional Topological Edge States of Bismuth Bilayers
The hallmark of a time-reversal symmetry protected topologically insulating
state of matter in two-dimensions (2D) is the existence of chiral edge modes
propagating along the perimeter of the system. To date, evidence for such
electronic modes has come from experiments on semiconducting heterostructures
in the topological phase which showed approximately quantized values of the
overall conductance as well as edge-dominated current flow. However, there have
not been any spectroscopic measurements to demonstrate the one-dimensional (1D)
nature of the edge modes. Among the first systems predicted to be a 2D
topological insulator are bilayers of bismuth (Bi) and there have been recent
experimental indications of possible topological boundary states at their
edges. However, the experiments on such bilayers suffered from irregular
structure of their edges or the coupling of the edge states to substrate's bulk
states. Here we report scanning tunneling microscopy (STM) experiments which
show that a subset of the predicted Bi-bilayers' edge states are decoupled from
states of Bi substrate and provide direct spectroscopic evidence of their 1D
nature. Moreover, by visualizing the quantum interference of edge mode
quasi-particles in confined geometries, we demonstrate their remarkable
coherent propagation along the edge with scattering properties that are
consistent with strong suppression of backscattering as predicted for the
propagating topological edge states.Comment: 15 pages, 5 figures, and supplementary materia
Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity
Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types.Project ALS FoundationNational Institutes of Health (U.S.) (Grant P01 NS055923
LBM-MHD Data-Driven Approach to Predict Rayleigh–Bénard Convective Heat Transfer by Levenberg–Marquardt Algorithm
This study aims to consider lattice Boltzmann method (LBM)–magnetohydrodynamics (MHD) data to develop equations to predict the average rate of heat transfer quantitatively. The present approach considers a 2D rectangular cavity with adiabatic side walls, and the bottom wall is heated while the top wall is kept cold. Rayleigh–Bénard (RB) convection was considered a heat-transfer phenomenon within the cavity. The Hartmann (Ha) number, by varying the inclination angle (θ), was considered in developing the equations by considering the input parameters, namely, the Rayleigh (Ra) numbers, Darcy (Da) numbers, and porosity (ϵ) of the cavity in different segments. Each segment considers a data-driven approach to calibrate the Levenberg–Marquardt (LM) algorithm, which is highly linked with the artificial neural network (ANN) machine learning method. Separate validations have been conducted in corresponding sections to showcase the accuracy of the equations. Overall, coefficients of determination (R2) were found to be within 0.85 to 0.99. The significant findings of this study present mathematical equations to predict the average Nusselt number (Nu¯). The equations can be used to quantitatively predict the heat transfer without directly simulating LBM. In other words, the equations can be considered validations methods for any LBM-MHD model, which considers RB convection within the range of the parameters in each equation
Lattice boltzmann simulation of magnetic field effect on electrically conducting fluid at inclined angles in rayleigh-bénard convection
The magneto-hydrodynamics (MHD) effect is studied at different inclined angles in Rayleigh-Bénard (RB) convection inside a rectangular enclosure using the lattice Boltzmann method (LBM). The enclosure is filled with electrically conducting fluids of different characteristics. These characteristics are definedbyPrandtlnumber,Pr. The considered Pr values for this study are 10 and 70. The influence of other dimensionless parameters Rayleigh numbers Ra ¼ 103; 104; 105; 106 and Hartmann numbers Ha = 0, 10, 25, 50, 100, on fluid flow and heat transfer, are also investigated considering different inclined angles φ of magnetic field by analyzing computed local Nusselt numbers and average Nusselt numbers. The results of the study show the undoubted prediction capability of LBM for the current problem. The simulated results demonstrate that the augmentation in heat transfer is directly related to Ra values, but it is opposite while observing the characteristics of Ha values. However, it is also found that φ has a significant impact on heat transfer for different fluids. Besides, isotherms are found to be always parallel to the horizontal axis at Ra ¼ 103 as conduction over-comes the convection in the heat transfer, but this behaviour is not seen at Ra ¼ 104 when Ha > 25. Furthermore,at Ra ¼ 106, oscillatory instability appears but LBM is still able to provide a complete map of this predicted beha-vior. An appropriate validation with previous numerical studies demonstrates the accuracy of the present approach
Large-Eddy Simulation of Airflow and Pollutant Dispersion in a Model Street Canyon Intersection of Dhaka City
The atmospheric flow and dispersion of traffic exhaust were numerically studied in this work while considering a model street canyon intersection of a city. The finite volume method (FVM)-based large-eddy simulation (LES) technique in line with ANSYS Fluent have been used for flow and pollutant dispersion modelling through the consideration of the atmospheric boundary layer (ABL). Hexahedral elements are considered for computational domain discretization in order to numerically solve problems using FVM-LES. The turbulence parameters were superimposed through a spectral synthesizer in the existing LES model through ANSYS Fluent as part of ’damage control’ due to the unsteady k−ϵ simulation. Initially, the code is validated with an experimental study of an urban street canyon where the width and height ratio is in unity. After validation, a model urban street canyon intersection was investigated in this work. The model shows a high pollutant concentration in the intersecting corner areas of the buildings. Additionally, the study of this model intersection shows a high level of pollutant concentration at the leeward wall of downwind building in the case of increased height of an upwind building. Most importantly, it was realized from the street intersection design that three-dimensional interconnection between the dominating canyon vortices and roof level flow plays a pivotal role in pollutant concentration level on the windward walls. The three-dimensional extent of corner eddies and their interconnections with dominating vortices were found to be extremely important as they facilitate enhanced ventilation. Corner eddies only form for the streets towards the freeway and not for the streets towards the intersection. The results and key findings of this work offer qualitative and quantitative data for the estimation, planning, and implementation of exposure mitigation in an urban environment
- …
