173 research outputs found
Simplifying instanton corrections to N=4 SYM correlators
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited
Lessons from crossing symmetry at large N
20 pages, v2: Assumptions stated more clearly, version published in JHEPWe consider the four-point correlator of the stress tensor multiplet in N=4 SYM. We construct all solutions consistent with crossing symmetry in the limit of large central charge c ~ N^2 and large g^2 N. While we find an infinite tower of solutions, we argue most of them are suppressed by an extra scale \Delta_{gap} and are consistent with the upper bounds for the scaling dimension of unprotected operators observed in the numerical superconformal bootstrap at large central charge. These solutions organize as a double expansion in 1/c and 1/\Delta_{gap}. Our solutions are valid to leading order in 1/c and to all orders in 1/\Delta_{gap} and reproduce, in particular, instanton corrections previously found. Furthermore, we find a connection between such upper bounds and positivity constraints arising from causality in flat space. Finally, we show that certain relations derived from causality constraints for scattering in AdS follow from crossing symmetry.Peer reviewe
Massive Gravity Theories and limits of Ghost-free Bigravity models
We construct a class of theories which extend New Massive Gravity to higher
orders in curvature in any dimension. The lagrangians arise as limits of a new
class of bimetric theories of Lovelock gravity, which are unitary theories free
from the Boulware-Deser ghost. These Lovelock bigravity models represent the
most general non-chiral ghost-free theories of an interacting massless and
massive spin-two field in any dimension. The scaling limit is taken in such a
way that unitarity is explicitly broken, but the Boulware-Deser ghost remains
absent. This automatically implies the existence of a holographic -theorem
for these theories. We also show that the Born-Infeld extension of New Massive
Gravity falls into our class of models demonstrating that this theory is also
free of the Boulware-Deser ghost. These results extend existing connections
between New Massive Gravity, bigravity theories, Galileon theories and
holographic -theorems.Comment: 11+5 page
AdS_7/CFT_6, Gauss-Bonnet Gravity, and Viscosity Bound
We study the relation between the causality and the positivity of energy
bounds in Gauss-Bonnet gravity in AdS_7 background and find a precise
agreement. Requiring the group velocity of metastable states to be bounded by
the speed of light places a bound on the value of Gauss-Bonnet coupling. To
find the positivity of energy constraints we compute the parameters which
determine the angular distribution of the energy flux in terms of three
independent coefficients specifying the three-point function of the
stress-energy tensor. We then relate the latter to the Weyl anomaly of the
six-dimensional CFT and compute the anomaly holographically. The resulting
upper bound on the Gauss-Bonnet coupling coincides with that from causality and
results in a new bound on viscosity/entropy ratio.Comment: 21 page, harvmac; v2: reference adde
Holographic studies of quasi-topological gravity
Quasi-topological gravity is a new gravitational theory including
curvature-cubed interactions and for which exact black hole solutions were
constructed. In a holographic framework, classical quasi-topological gravity
can be thought to be dual to the large limit of some non-supersymmetric
but conformal gauge theory. We establish various elements of the AdS/CFT
dictionary for this duality. This allows us to infer physical constraints on
the couplings in the gravitational theory. Further we use holography to
investigate hydrodynamic aspects of the dual gauge theory. In particular, we
find that the minimum value of the shear-viscosity-to-entropy-density ratio for
this model is .Comment: 45 pages, 6 figures. v2: References adde
Holographic GB gravity in arbitrary dimensions
We study the properties of the holographic CFT dual to Gauss-Bonnet gravity
in general dimensions. We establish the AdS/CFT dictionary and in
particular relate the couplings of the gravitational theory to the universal
couplings arising in correlators of the stress tensor of the dual CFT. This
allows us to examine constraints on the gravitational couplings by demanding
consistency of the CFT. In particular, one can demand positive energy fluxes in
scattering processes or the causal propagation of fluctuations. We also examine
the holographic hydrodynamics, commenting on the shear viscosity as well as the
relaxation time. The latter allows us to consider causality constraints arising
from the second-order truncated theory of hydrodynamics.Comment: 48 pages, 9 figures. v2: New discussion on free fields in subsection
3.3 and new appendix B on conformal tensor fields. Added comments on the
relation between the central charge appearing in the two-point function and
the "central charge" characterizing the entropy density in the discussion.
References adde
Comments on Holographic Entanglement Entropy and RG Flows
Using holographic entanglement entropy for strip geometry, we construct a
candidate for a c-function in arbitrary dimensions. For holographic theories
dual to Einstein gravity, this c-function is shown to decrease monotonically
along RG flows. A sufficient condition required for this monotonic flow is that
the stress tensor of the matter fields driving the holographic RG flow must
satisfy the null energy condition over the holographic surface used to
calculate the entanglement entropy. In the case where the bulk theory is
described by Gauss-Bonnet gravity, the latter condition alone is not sufficient
to establish the monotonic flow of the c-function. We also observe that for
certain holographic RG flows, the entanglement entropy undergoes a 'phase
transition' as the size of the system grows and as a result, evolution of the
c-function may exhibit a discontinuous drop.Comment: References adde
Holography of Charged Dilaton Black Holes
We study charged dilaton black branes in . Our system involves a
dilaton coupled to a Maxwell field with dilaton-dependent
gauge coupling, . First, we find the solutions for
extremal and near extremal branes through a combination of analytical and
numerical techniques. The near horizon geometries in the simplest cases, where
, are Lifshitz-like, with a dynamical exponent
determined by . The black hole thermodynamics varies in an interesting
way with , but in all cases the entropy is vanishing and the specific
heat is positive for the near extremal solutions. We then compute conductivity
in these backgrounds. We find that somewhat surprisingly, the AC conductivity
vanishes like at T=0 independent of . We also explore the
charged black brane physics of several other classes of gauge-coupling
functions . In addition to possible applications in AdS/CMT, the
extremal black branes are of interest from the point of view of the attractor
mechanism. The near horizon geometries for these branes are universal,
independent of the asymptotic values of the moduli, and describe generic
classes of endpoints for attractor flows which are different from .Comment: 33 pages, 3 figures, LaTex; v2, references added; v3, more refs
added; v4, refs added, minor correction
Differential equations for multi-loop integrals and two-dimensional kinematics
In this paper we consider multi-loop integrals appearing in MHV scattering
amplitudes of planar N=4 SYM. Through particular differential operators which
reduce the loop order by one, we present explicit equations for the two-loop
eight-point finite diagrams which relate them to massive hexagons. After the
reduction to two-dimensional kinematics, we solve them using symbol technology.
The terms invisible to the symbols are found through boundary conditions coming
from double soft limits. These equations are valid at all-loop order for double
pentaladders and allow to solve iteratively loop integrals given lower-loop
information. Comments are made about multi-leg and multi-loop integrals which
can appear in this special kinematics. The main motivation of this
investigation is to get a deeper understanding of these tools in this
configuration, as well as for their application in general four-dimensional
kinematics and to less supersymmetric theories.Comment: 25 pages, 7 figure
Nonlinear Hydrodynamics from Flow of Retarded Green's Function
We study the radial flow of retarded Green's function of energy-momentum
tensor and -current of dual gauge theory in presence of generic higher
derivative terms in bulk Lagrangian. These are first order non-linear Riccati
equations. We solve these flow equations analytically and obtain second order
transport coefficients of boundary plasma. This way of computing transport
coefficients has an advantage over usual Kubo approach. The non-linear equation
turns out to be a linear first order equation when we study the Green's
function perturbatively in momentum. We consider several examples including
term and generic four derivative terms in bulk. We also study the flow
equations for -charged black holes and obtain exact expressions for second
order transport coefficients for dual plasma in presence of arbitrary chemical
potentials. Finally we obtain higher derivative corrections to second order
transport coefficients of boundary theory dual to five dimensional gauge
supergravity.Comment: Version 2, reference added, typos correcte
- …
