839 research outputs found
Isocitrate dehydrogenase 1 mutations (IDH1) and p16/CDKN2A copy number change in conventional chondrosarcomas.
To determine whether IDH1 mutations are present in primary and relapsed (local and distal) conventional central chondrosarcomas; and secondly, to assess if loss of p16/CDKN2A is associated with tumour grade progression, 102 tumour samples from 37 patients, including material from presenting and relapse events, were assessed. All wild-type cases for IDH1 R132 substitutions were also tested for IDH2 R172 and R140 alterations. The primary tumour and the most recent relapse sample were tested for p16/CDKN2A by interphase fluorescence in situ hybridisation. An additional 120 central cartilaginous tumours from different patients were also tested for p16/CDKN2A copy number. The study shows that if an IDH1 mutation were detected in a primary central chondrosarcoma, it is always detected at the time of presentation, and the same mutation is detected in local recurrences and metastatic events. We show that p16/CDKN2A copy number variation occurs subsequent to the IDH1 mutation, and confirm that p16/CDKN2A copy number variation occurs in 75 % of high grade central chondrosarcomas, and not in low grade cartilaginous tumours. Finally, p16/CDKN2A copy number variation is seen in both the IDH1 wild-type and mutant cartilaginous central tumours
Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial
Copyright @ 2012 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Motor imagery (MI) when combined with physiotherapy can offer functional benefits after stroke. Two MI integration strategies exist: added and embedded MI. Both approaches were compared when learning a complex motor task (MT): ‘Going down, laying on the floor, and getting up again’. Methods: Outpatients after first stroke participated in a single-blinded, randomised controlled trial with MI embedded into physiotherapy (EG1), MI added to physiotherapy (EG2), and a control group (CG). All groups participated in six physiotherapy sessions. Primary study outcome was time (sec) to perform the motor task at pre and post-intervention. Secondary outcomes: level of help needed, stages of MT-completion, independence, balance, fear of falling (FOF), MI ability. Data were collected four times: twice during one week baseline phase (BL, T0), following the two week intervention (T1), after a two week follow-up (FU). Analysis of variance was performed. Results: Thirty nine outpatients were included (12 females, age: 63.4 ± 10 years; time since stroke: 3.5 ± 2 years; 29 with an ischemic event). All were able to complete the motor task using the standardised 7-step procedure and reduced FOF at T0, T1, and FU. Times to perform the MT at baseline were 44.2 ± 22s, 64.6 ± 50s, and 118.3 ± 93s for EG1 (N = 13), EG2 (N = 12), and CG (N = 14). All groups showed significant improvement in time to complete the MT (p < 0.001) and degree of help needed to perform the task: minimal assistance to supervision (CG) and independent performance (EG1+2). No between group differences were found. Only EG1 demonstrated changes in MI ability over time with the visual indicator increasing from T0 to T1 and decreasing from T1 to FU. The kinaesthetic indicator increased from T1 to FU. Patients indicated to value the MI training and continued using MI for other difficult-to-perform tasks. Conclusions: Embedded or added MI training combined with physiotherapy seem to be feasible and benefi-cial to learn the MT with emphasis on getting up independently. Based on their baseline level CG had the highest potential to improve outcomes. A patient study with 35 patients per group could give a conclusive answer of a superior MI integration strategy.The research project was partially funded by the Gottfried und Julia Bangerter-Rhyner Foundation
A surface-patterned chip as a strong source of ultracold atoms for quantum technologies
Laser-cooled atoms are central to modern precision measurements. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics, quantum information processing and matter–wave interferometry. Although significant progress has been made in miniaturizing atomic metrological devices, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefits from the advantages of atoms in the microkelvin regime. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult. In this Letter we address this problem, realizing an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with simplicity of fabrication and ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices
Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach
Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique
Captive reptile mortality rates in the home and implications for the wildlife trade
The trade in wildlife and keeping of exotic pets is subject to varying levels of national and international regulation and is a topic often attracting controversy. Reptiles are popular exotic pets and comprise a substantial component of the live animal trade. High mortality of traded animals raises welfare concerns, and also has implications for conservation if collection from the wild is required to meet demand. Mortality of reptiles can occur at any stage of the trade chain from collector to consumer. However, there is limited information on mortality rates of reptiles across trade chains, particularly amongst final consumers in the home. We investigated mortality rates of reptiles amongst consumers using a specialised technique for asking sensitive questions, additive Randomised Response Technique (aRRT), as well as direct questioning (DQ). Overall, 3.6% of snakes, chelonians and lizards died within one year of acquisition. Boas and pythons had the lowest reported mortality rates of 1.9% and chameleons had the highest at 28.2%. More than 97% of snakes, 87% of lizards and 69% of chelonians acquired by respondents over five years were reported to be captive bred and results suggest that mortality rates may be lowest for captive bred individuals. Estimates of mortality from aRRT and DQ did not differ significantly which is in line with our findings that respondents did not find questions about reptile mortality to be sensitive. This research suggests that captive reptile mortality in the home is rather low, and identifies those taxa where further effort could be made to reduce mortality rate
Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm
Background
Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches.
Methods
We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability.
Results
Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model.
Conclusions
Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models
Resolution of inflammation: a new therapeutic frontier
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field
Measuring Health Utilities in Children and Adolescents: A Systematic Review of the Literature.
BACKGROUND: The objective of this review was to evaluate the use of all direct and indirect methods used to estimate health utilities in both children and adolescents. Utilities measured pre- and post-intervention are combined with the time over which health states are experienced to calculate quality-adjusted life years (QALYs). Cost-utility analyses (CUAs) estimate the cost-effectiveness of health technologies based on their costs and benefits using QALYs as a measure of benefit. The accurate measurement of QALYs is dependent on using appropriate methods to elicit health utilities. OBJECTIVE: We sought studies that measured health utilities directly from patients or their proxies. We did not exclude those studies that also included adults in the analysis, but excluded those studies focused only on adults. METHODS AND FINDINGS: We evaluated 90 studies from a total of 1,780 selected from the databases. 47 (52%) studies were CUAs incorporated into randomised clinical trials; 23 (26%) were health-state utility assessments; 8 (9%) validated methods and 12 (13%) compared existing or new methods. 22 unique direct or indirect calculation methods were used a total of 137 times. Direct calculation through standard gamble, time trade-off and visual analogue scale was used 32 times. The EuroQol EQ-5D was the most frequently-used single method, selected for 41 studies. 15 of the methods used were generic methods and the remaining 7 were disease-specific. 48 of the 90 studies (53%) used some form of proxy, with 26 (29%) using proxies exclusively to estimate health utilities. CONCLUSIONS: Several child- and adolescent-specific methods are still being developed and validated, leaving many studies using methods that have not been designed or validated for use in children or adolescents. Several studies failed to justify using proxy respondents rather than administering the methods directly to the patients. Only two studies examined missing responses to the methods administered with respect to the patients' ages
Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
An Efficient Rule-Based Distributed Reasoning Framework for Resource-bounded Systems
© 2018, The Author(s). Over the last few years, context-aware computing has received a growing amount of attention among the researchers in the IoT and ubiquitous computing community. In principle, context-aware computing transforms a physical environment into a smart space by sensing the surrounding environment and interpreting the situation of the user. This process involves three major steps: context acquisition, context modelling, and context-aware reasoning. Among other approaches, ontology-based context modelling and rule-based context reasoning are widely used techniques to enable semantic interoperability and interpreting user situations. However, implementing rich context-aware applications that perform reasoning on resource-bounded mobile devices is quite challenging. In this paper, we present a context-aware systems development framework for smart spaces, which includes a lightweight efficient rule engine and a wide range of user preferences to reduce the number of rules while inferring personalized contexts. This shows rules can be reduced in order to optimize the inference engine execution speed, and ultimately to reduce total execution time and execution cost
- …
