297 research outputs found
Thinking about Later Life: Insights from the Capability Approach
A major criticism of mainstream gerontological frameworks is the inability of such frameworks to appreciate and incorporate issues of diversity and difference in engaging with experiences of aging. Given the prevailing socially structured nature of inequalities, such differences matter greatly in shaping experiences, as well as social constructions, of aging. I argue that Amartya Sen’s capability approach (2009) potentially offers gerontological scholars a broad conceptual framework that places at its core consideration of human beings (their values) and centrality of human diversity. As well as identifying these key features of the capability approach, I discuss and demonstrate their relevance to thinking about old age and aging. I maintain that in the context of complex and emerging identities in later life that shape and are shaped by shifting people-place and people-people relationships, Sen’s capability approach offers significant possibilities for gerontological research
High-throughput in vivo vertebrate screening
We demonstrate a high-throughput platform for cellular-resolution in vivo chemical and genetic screens on zebrafish larvae. The system automatically loads zebrafish from reservoirs or multiwell plates, and positions and rotates them for high-speed confocal imaging and laser manipulation of both superficial and deep organs within 19 s without damage. We performed small-scale test screening of retinal axon guidance mutants and neuronal regeneration assays in combination with femtosecond laser microsurgery.National Institutes of Health (U.S.) (Director’s Innovator Award 1-DP2-OD002989–01)David & Lucile Packard Foundation (Award in Science and Engineering)Alfred P. Sloan Foundation (Award)Broad Institute of MIT and Harvard (Sparc Grant)National Science Foundation (U.S.) (Fellowship)Foxconn (Sponsorship
Recommended from our members
Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium)
Background
In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways.
Results
In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect transcript abundance of WPS46, an auxin-induced gene.
Conclusions
A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission
Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
Persistent Cell Motion in the Absence of External Signals: A Search Strategy for Eukaryotic Cells
Eukaryotic cells are large enough to detect signals and then orient to them
by differentiating the signal strength across the length and breadth of the
cell. Amoebae, fibroblasts, neutrophils and growth cones all behave in this
way. Little is known however about cell motion and searching behavior in the
absence of a signal. Is individual cell motion best characterized as a random
walk? Do individual cells have a search strategy when they are beyond the range
of the signal they would otherwise move toward? Here we ask if single,
isolated, Dictyostelium and Polysphondylium amoebae bias their motion in the
absence of external cues. We placed single well-isolated Dictyostelium and
Polysphondylium cells on a nutrient-free agar surface and followed them at 10
sec intervals for ~10 hr, then analyzed their motion with respect to velocity,
turning angle, persistence length, and persistence time, comparing the results
to the expectation for a variety of different types of random motion. We find
that amoeboid behavior is well described by a special kind of random motion:
Amoebae show a long persistence time (~10 min) beyond which they start to lose
their direction; they move forward in a zig-zag manner; and they make turns
every 1-2 min on average. They bias their motion by remembering the last turn
and turning away from it. Interpreting the motion as consisting of runs and
turns, the duration of a run and the amplitude of a turn are both found to be
exponentially distributed. We show that this behavior greatly improves their
chances of finding a target relative to performing a random walk. We believe
that other eukaryotic cells may employ a strategy similar to Dictyostelium when
seeking conditions or signal sources not yet within range of their detection
system.Comment: 15 pages, 11 figures, accepted for publication in PLOS On
Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production
BACKGROUND: The co-inhibitory receptor Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) attenuates immune responses and prevent autoimmunity, however, tumors exploit this pathway to evade the host T-cell response. The T-cell co-stimulatory receptor 4-1BB is transiently upregulated on T-cells following activation and increases their proliferation and inflammatory cytokine production when engaged. Antibodies which block CTLA-4 or which activate 4-1BB can promote the rejection of some murine tumors, but fail to cure poorly immunogenic tumors like B16 melanoma as single agents.METHODOLOGY/PRINCIPAL FINDINGS: We find that combining ?CTLA-4 and ?4-1BB antibodies in the context of a Flt3-ligand, but not a GM-CSF, based B16 melanoma vaccine promoted synergistic levels of tumor rejection. 4-1BB activation elicited strong infiltration of CD8+ T-cells into the tumor and drove the proliferation of these cells, while CTLA-4 blockade did the same for CD4+ effector T-cells. Anti-4-1BB also depressed regulatory T-cell infiltration of tumors. 4-1BB activation strongly stimulated inflammatory cytokine production in the vaccine and tumor draining lymph nodes and in the tumor itself. The addition of CTLA-4 blockade further increased IFN-? production from CD4+ effector T-cells in the vaccine draining node and the tumor. Anti 4-1BB treatment, with or without CTLA-4 blockade, induced approximately 75% of CD8+ and 45% of CD4+ effector T-cells in the tumor to express the killer cell lectin-like receptor G1 (KLRG1). Tumors treated with combination antibody therapy showed 1.7-fold greater infiltration by these KLRG1+CD4+ effector T-cells than did those treated with ?4-1BB alone.CONCLUSIONS/SIGNIFICANCE: This study shows that combining T-cell co-inhibitory blockade with ?CTLA-4 and active co-stimulation with ?4-1BB promotes rejection of B16 melanoma in the context of a suitable vaccine. In addition, we identify KLRG1 as a useful marker for monitoring the anti-tumor immune response elicited by this therapy. These findings should aid in the design of future trials for the immunotherapy of melanoma
A model of feedback control for the charge-balanced suppression of epileptic seizures
Here we present several refinements to a model of feedback control for the suppression of epileptic seizures. We utilize a stochastic partial differential equation (SPDE) model of the human cortex. First, we verify the strong convergence of numerical solutions to this model, paying special attention to the sharp spatial changes that occur at electrode edges. This allows us to choose appropriate step sizes for our simulations; because the spatial step size must be small relative to the size of an electrode in order to resolve its electrical behavior, we are able to include a more detailed electrode profile in the simulation. Then, based on evidence that the mean soma potential is not the variable most closely related to the measurement of a cortical surface electrode, we develop a new model for this. The model is based on the currents flowing in the cortex and is used for a simulation of feedback control. The simulation utilizes a new control algorithm incorporating the total integral of the applied electrical potential. Not only does this succeed in suppressing the seizure-like oscillations, but it guarantees that the applied signal will be charge-balanced and therefore unlikely to cause cortical damage
Genetic polymorphisms involved in dopaminergic neurotransmission and risk for Parkinson's disease in a Japanese population
Adult reversal of cognitive phenotypes in neurodevelopmental disorders
Recent findings in mice suggest that it is possible to reverse certain neurodevelopmental disorders in adults. Changes in development, previously thought to be irreparable in adults, were believed to underlie the neurological and psychiatric phenotypes of a range of common mental health problems with a clear developmental component. As a consequence, most researchers have focused their efforts on understanding the molecular and cellular processes that alter development with the hope that early intervention could prevent the emergent pathology. Unexpectedly, several different animal model studies published recently, including animal models of autism, suggest that it may be possible to reverse neurodevelopmental disorders in adults: Addressing the underlying molecular and cellular deficits in adults could in several cases dramatically improve the neurocognitive phenotypes in these animal models. The findings reviewed here provide hope to millions of individuals afflicted with a wide range of neurodevelopmental disorders, including autism, since they suggest that it may be possible to treat or even cure them in adults
Transoral laser microsurgery for laryngeal cancer: A primer and review of laser dosimetry
Transoral laser microsurgery (TLM) is an emerging technique for the management of laryngeal and other head and neck malignancies. It is increasingly being used in place of traditional open surgery because of lower morbidity and improved organ preservation. Since the surgery is performed from the inside working outward as opposed to working from the outside in, there is less damage to the supporting structures that lie external to the tumor. Coupling the laser to a micromanipulator and a microscope allows precise tissue cutting and hemostasis; thereby improving visualization and precise ablation. The basic approach and principles of performing TLM, the devices currently in use, and the associated dosimetry parameters will be discussed. The benefits of using TLM over conventional surgery, common complications and the different settings used depending on the location of the tumor will also be discussed. Although the CO2 laser is the most versatile and the best-suited laser for TLM applications, a variety of lasers and different parameters are used in the treatment of laryngeal cancer. Improved instrumentation has lead to an increased utilization of TLM by head and neck cancer surgeons and has resulted in improved outcomes. Laser energy levels and spot size are adjusted to vary the precision of cutting and amount of hemostasis obtained
- …
