2,000 research outputs found

    Does training with amplitude modulated tones affect tone-vocoded speech perception?

    Get PDF
    Temporal-envelope cues are essential for successful speech perception. We asked here whether training on stimuli containing temporal-envelope cues without speech content can improve the perception of spectrally-degraded (vocoded) speech in which the temporal-envelope (but not the temporal fine structure) is mainly preserved. Two groups of listeners were trained on different amplitude-modulation (AM) based tasks, either AM detection or AM-rate discrimination (21 blocks of 60 trials during two days, 1260 trials; frequency range: 4Hz, 8Hz, and 16Hz), while an additional control group did not undertake any training. Consonant identification in vocoded vowel-consonant-vowel stimuli was tested before and after training on the AM tasks (or at an equivalent time interval for the control group). Following training, only the trained groups showed a significant improvement in the perception of vocoded speech, but the improvement did not significantly differ from that observed for controls. Thus, we do not find convincing evidence that this amount of training with temporal-envelope cues without speech content provide significant benefit for vocoded speech intelligibility. Alternative training regimens using vocoded speech along the linguistic hierarchy should be explored

    Direct observation of incommensurate magnetism in Hubbard chains

    Get PDF
    The interplay between magnetism and doping is at the origin of exotic strongly correlated electronic phases and can lead to novel forms of magnetic ordering. One example is the emergence of incommensurate spin-density waves with a wave vector that does not match the reciprocal lattice. In one dimension this effect is a hallmark of Luttinger liquid theory, which also describes the low energy physics of the Hubbard model. Here we use a quantum simulator based on ultracold fermions in an optical lattice to directly observe such incommensurate spin correlations in doped and spin-imbalanced Hubbard chains using fully spin and density resolved quantum gas microscopy. Doping is found to induce a linear change of the spin-density wave vector in excellent agreement with Luttinger theory predictions. For non-zero polarization we observe a decrease of the wave vector with magnetization as expected from the Heisenberg model in a magnetic field. We trace the microscopic origin of these incommensurate correlations to holes, doublons and excess spins which act as delocalized domain walls for the antiferromagnetic order. Finally, when inducing interchain coupling we observe fundamentally different spin correlations around doublons indicating the formation of a magnetic polaron

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    A Novel Tantalum-Containing Bioglass. Part II. Development of a Bioadhesive for Sternal Fixation and Repair

    Get PDF
    With over a million median sternotomy surgeries performed worldwide every year, sternal wound complications have posed a serious risk to the affected patients. A rigid therapeutic sternal fixation device has therefore become a necessity. In this work, the incorporation of up to 0.5 mol% of tantalum pentoxide (Ta2O5), in exchange for zinc oxide (ZnO), into the SiO2-ZnO-CaO-SrO-P2O5 glass system is presented. The effect of Ta incorporation on the physical, chemical and biological properties of the glass polyalkenoate cements (GPCs) prepared from them have been presented in this manuscript. The data obtained have confirmed that Ta2O5 incorporation into the reference glass system results in increased working times, radiopacity, ion solubility, and long-term mechanical stability. The formulated glass systems have also shown clear antibacterial and antifungal activity against both Gram-negative (Escherichia coli) and Gram-positive prokaryotes (Staphylococcus aureus and Streptococcus epidermidis), as well as eukaryotes (Fusarium solani). Cytotoxicity testing showed that Ta incorporation results in no toxicity effect and may simulate osseo-integration when tested in animal models. These new metallic-containing biomaterial adhesives have been developed for sternal fixation and repair. As a permanent implant, the formulated adhesives can be used in conjunction with sternal cable ties to offer optimal fixation for patients and reduce post-operative complications such as bacterial infection and pain from micro-motion

    T2 Values of Posterior Horns of Knee Menisci in Asymptomatic Subjects

    Get PDF
    [[abstract]]Purpose: The magnetic resonance (MR) T2 value of cartilage is a reliable indicator of tissue properties and therefore may be used as an objective diagnostic tool in early meniscal degeneration. The purpose of this study was to investigate age, gender, location, and zonal differences in MR T2 value of the posterior horns of knee menisci in asymptomatic subjects. Methods: Sixty asymptomatic volunteers (30 men and 30 women) were enrolled and divided into three different age groups: 20–34, 35–49 and 50–70 years. The inclusion criteria were BMI<30 kg/cm2, normalized Western Ontario and McMaster Universities (WOMAC) pain score of zero, and no evidence of meniscal and ligamentous abnormalities on routine knee MR imaging. The T2 values were measured on images acquired with a T2-weighted fat-suppressed turbo spin-echo sequence at 3T. Results: The mean T2 values in both medial and lateral menisci for the 20–34, 35–49, and 50–70 age groups were 9.94 msec±0.94, 10.73 msec±1.55, and 12.36 msec±2.27, respectively, for women and 9.17 msec±0.74, 9.64 msec±0.67, and 10.95 msec±1.33, respectively, for men. The T2 values were significantly higher in the 50–70 age group than the 20–34 age group (P<0.001) and in women than in men (P = 0.001, 0.004, and 0.049 for each respective age group). T2 values were significantly higher in medial menisci than in lateral menisci only in women age 50–70 (3.33 msec, P = 0.006) and in the white zone and red/white zone of the 50–70 and 35–49 age groups than that of the 20–34 age group (2.47, 1.02; 2.77, 1.16 msec, respectively, all P<0.01). Conclusion: The MR T2 values of the posterior meniscal horns increase with increasing age in women and are higher in women than in men. The age-related rise of T2 values appears to be more severe in medial menisci than in lateral menisci. Differences exist in the white zone and red/white zone.[[incitationindex]]SCI[[booktype]]電子

    Reconstruction of major maternal and paternal lineages of the Cape Muslim population

    Get PDF
    The earliest Cape Muslims were brought to the Cape (Cape Town - South Africa) from Africa and Asia from 1652 to 1834. They were part of an involuntary migration of slaves, political prisoners and convicts, and they contributed to the ethnic diversity of the present Cape Muslim population of South Africa. The history of the Cape Muslims has been well documented and researched however no in-depth genetic studies have been undertaken. The aim of the present study was to determine the respective African, Asian and European contributions to the mtDNA (maternal) and Y-chromosomal (paternal) gene pool of the Cape Muslim population, by analyzing DNA samples of 100 unrelated Muslim males born in the Cape Metropolitan area. A panel of six mtDNA and eight Y-chromosome SNP markers were screened using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). Overall admixture estimates for the maternal line indicated Asian (0.4168) and African mtDNA (0.4005) as the main contributors. The admixture estimates for the paternal line, however, showed a predominance of the Asian contribution (0.7852). The findings are in accordance with historical data on the origins of the early Cape Muslims.Web of Scienc

    Person-Specific Non-shared Environmental Influences in Intra-individual Variability : A Preliminary Case of Daily School Feelings in Monozygotic Twins

    Get PDF
    Most behavioural genetic studies focus on genetic and environmental influences on inter-individual phenotypic differences at the population level. The growing collection of intensive longitudinal data in social and behavioural science offers a unique opportunity to examine genetic and environmental influences on intra-individual phenotypic variability at the individual level. The current study introduces a novel idiographic approach and one novel method to investigate genetic and environmental influences on intra-individual variability by a simple empirical demonstration. Person-specific non-shared environmental influences on intra-individual variability of daily school feelings were estimated using time series data from twenty-one pairs of monozygotic twins (age = 10 years, 16 female pairs) over two consecutive weeks. Results showed substantial inter-individual heterogeneity in person-specific non-shared environmental influences. The current study represents a first step in investigating environmental influences on intra-individual variability with an idiographic approach, and provides implications for future behavioural genetic studies to examine developmental processes from a microscopic angle

    Heterogeneity assessment of functional T cell avidity.

    Get PDF
    The potency of cellular immune responses strongly depends on T cell avidity to antigen. Yet, functional avidity measurements are rarely performed in patients, mainly due to the technical challenges of characterizing heterogeneous T cells. The mean functional T cell avidity can be determined by the IFN-γ Elispot assay, with titrated amounts of peptide. Using this assay, we developed a method revealing the heterogeneity of functional avidity, represented by the steepness/hillslope of the peptide titration curve, documented by proof of principle experiments and mathematical modeling. Our data show that not only natural polyclonal CD8 T cell populations from cancer patients, but also monoclonal T cells differ strongly in their heterogeneity of functional avidity. Interestingly, clones and polyclonal cells displayed comparable ranges of heterogeneity. We conclude that besides the mean functional avidity, it is feasible and useful to determine its heterogeneity (hillslope) for characterizing T cell responses in basic research and patient investigation
    corecore