69 research outputs found
Conceptualizing pathways linking women's empowerment and prematurity in developing countries.
BackgroundGlobally, prematurity is the leading cause of death in children under the age of 5. Many efforts have focused on clinical approaches to improve the survival of premature babies. There is a need, however, to explore psychosocial, sociocultural, economic, and other factors as potential mechanisms to reduce the burden of prematurity. Women's empowerment may be a catalyst for moving the needle in this direction. The goal of this paper is to examine links between women's empowerment and prematurity in developing settings. We propose a conceptual model that shows pathways by which women's empowerment can affect prematurity and review and summarize the literature supporting the relationships we posit. We also suggest future directions for research on women's empowerment and prematurity.MethodsThe key words we used for empowerment in the search were "empowerment," "women's status," "autonomy," and "decision-making," and for prematurity we used "preterm," "premature," and "prematurity." We did not use date, language, and regional restrictions. The search was done in PubMed, Population Information Online (POPLINE), and Web of Science. We selected intervening factors-factors that could potentially mediate the relationship between empowerment and prematurity-based on reviews of the risk factors and interventions to address prematurity and the determinants of those factors.ResultsThere is limited evidence supporting a direct link between women's empowerment and prematurity. However, there is evidence linking several dimensions of empowerment to factors known to be associated with prematurity and outcomes for premature babies. Our review of the literature shows that women's empowerment may reduce prematurity by (1) preventing early marriage and promoting family planning, which will delay age at first pregnancy and increase interpregnancy intervals; (2) improving women's nutritional status; (3) reducing domestic violence and other stressors to improve psychological health; and (4) improving access to and receipt of recommended health services during pregnancy and delivery to help prevent prematurity and improve survival of premature babies.ConclusionsWomen's empowerment is an important distal factor that affects prematurity through several intervening factors. Improving women's empowerment will help prevent prematurity and improve survival of preterm babies. Research to empirically show the links between women's empowerment and prematurity is however needed
Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: first evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control.
BACKGROUND: Onchocerciasis can be effectively controlled as a public health problem by annual mass drug administration of ivermectin, but it was not known if ivermectin treatment in the long term would be able to achieve elimination of onchocerciasis infection and interruption of transmission in endemic areas in Africa. A recent study in Mali and Senegal has provided the first evidence of elimination after 15-17 years of treatment. Following this finding, the African Programme for Onchocerciasis Control (APOC) has started a systematic evaluation of the long-term impact of ivermectin treatment projects and the feasibility of elimination in APOC supported countries. This paper reports the first results for two onchocerciasis foci in Kaduna, Nigeria. METHODS: In 2008, an epidemiological evaluation using skin snip parasitological diagnostic method was carried out in two onchocerciasis foci, in Birnin Gwari Local Government Area (LGA), and in the Kauru and Lere LGAs of Kaduna State, Nigeria. The survey was undertaken in 26 villages and examined 3,703 people above the age of one year. The result was compared with the baseline survey undertaken in 1987. RESULTS: The communities had received 15 to 17 years of ivermectin treatment with more than 75% reported coverage. For each surveyed community, comparable baseline data were available. Before treatment, the community prevalence of O. volvulus microfilaria in the skin ranged from 23.1% to 84.9%, with a median prevalence of 52.0%. After 15 to 17 years of treatment, the prevalence had fallen to 0% in all communities and all 3,703 examined individuals were skin snip negative. CONCLUSIONS: The results of the surveys confirm the finding in Senegal and Mali that ivermectin treatment alone can eliminate onchocerciasis infection and probably disease transmission in endemic foci in Africa. It is the first of such evidence for the APOC operational area
Model-based geostatistical mapping of the prevalence of onchocerca volvulus in West Africa.
Background:
The initial endemicity (pre-control prevalence) of onchocerciasis has been shown to be an important determinant of the feasibility of elimination by mass ivermectin distribution. We present the first geostatistical map of microfilarial prevalence in the former Onchocerciasis Control Programme in West Africa (OCP) before commencement of antivectorial and antiparasitic interventions.
Methods and Findings:
Pre-control microfilarial prevalence data from 737 villages across the 11 constituent countries in the OCP epidemiological database were used as ground-truth data. These 737 data points, plus a set of statistically selected environmental covariates, were used in a Bayesian model-based geostatistical (B-MBG) approach to generate a continuous surface (at pixel resolution of 5 km x 5km) of microfilarial prevalence in West Africa prior to the commencement of the OCP. Uncertainty in model predictions was measured using a suite of validation statistics, performed on bootstrap samples of held-out validation data. The mean Pearson’s correlation between observed and estimated prevalence at validation locations was 0.693; the mean prediction error (average difference between observed and estimated values) was 0.77%, and the mean absolute prediction error (average magnitude of difference between observed and estimated values) was 12.2%. Within OCP boundaries, 17.8 million people were deemed to have been at risk, 7.55 million to have been infected, and mean microfilarial prevalence to have been 45% (range: 2–90%) in 1975.
Conclusions and Significance:
This is the first map of initial onchocerciasis prevalence in West Africa using B-MBG. Important environmental predictors of infection prevalence were identified and used in a model out-performing those without spatial random effects or environmental covariates. Results may be compared with recent epidemiological mapping efforts to find areas of persisting transmission. These methods may be extended to areas where data are sparse, and may be used to help inform the feasibility of elimination with current and novel tools
Feasibility of Onchocerciasis Elimination with Ivermectin Treatment in Endemic Foci in Africa: First Evidence from Studies in Mali and Senegal
The control of onchocerciasis, or river blindness, is based on annual or six-monthly ivermectin treatment of populations at risk. This has been effective in controlling the disease as a public health problem, but it is not known whether it can also eliminate infection and transmission to the extent that treatment can be safely stopped. Many doubt that this is feasible in Africa. A study was undertaken in three hyperendemic onchocerciasis foci in Mali and Senegal where treatment has been given for 15 to 17 years. The results showed that only few infections remained in the human population and that transmission levels were everywhere below postulated thresholds for elimination. Treatment was subsequently stopped in test areas in each focus, and follow-up evaluations did not detect any recrudescence of infection or transmission. Hence, the study has provided the first evidence that onchocerciasis elimination is feasible with ivermectin treatment in some endemic foci in Africa. Although further studies are needed to determine to what extent these findings can be extrapolated to other areas in Africa, the principle of onchocerciasis elimination with ivermectin treatment has been established
Density-Dependent Mortality of the Human Host in Onchocerciasis: Relationships between Microfilarial Load and Excess Mortality
Human onchocerciasis (River Blindness) is a parasitic disease leading to visual impairment including blindness. Blindness may lead to premature death, but infection with the parasite itself (Onchocerca volvulus) may also cause excess mortality in sighted individuals. The excess risk of mortality may not be directly (linearly) proportional to the intensity of infection (a measure of how many parasites an individual harbours). We analyze cohort data from the Onchocerciasis Control Programme in West Africa, collected between 1974 and 2001, by fitting a suite of quantitative models (including a ‘null’ model of no relationship between infection intensity and mortality, a (log-) linear function, and two plateauing curves), and choosing the one that is the most statistically adequate. The risk of human mortality initially increases with parasite density but saturates at high densities (following an S-shape curve), and such risk is greater in younger individuals for a given infection intensity. Our results have important repercussions for programmes aiming to control onchocerciasis (in terms of how the benefits of the programme are calculated), for measuring the burden of disease and mortality caused by the infection, and for a better understanding of the processes that govern the density of parasite populations among human hosts
Onchocerciasis, an undiagnosed disease in Mozambique: identifying research opportunities
Magnesium Limitation Is an Environmental Trigger of the Pseudomonas aeruginosa Biofilm Lifestyle
Biofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa. Here we detail our approach to identify environmental triggers of biofilm formation by investigating environmental conditions that repress expression of the biofilm repressor RetS. Mg2+ limitation repressed the expression of retS leading to increased aggregation, exopolysaccharide (EPS) production and biofilm formation. Repression of retS expression under Mg2+ limitation corresponded with induced expression of the GacA-controlled small regulatory RNAs rsmZ and rsmY and the EPS biosynthesis operons pel and psl. We recently demonstrated that extracellular DNA sequesters Mg2+ cations and activates the cation-sensing PhoPQ two-component system, which leads to increased antimicrobial peptide resistance in biofilms. Here we show that exogenous DNA and EDTA, through their ability to chelate Mg2+, promoted biofilm formation. The repression of retS in low Mg2+ was directly controlled by PhoPQ. PhoP also directly controlled expression of rsmZ but not rsmY suggesting that PhoPQ controls the equilibrium of the small regulatory RNAs and thus fine-tunes the expression of genes in the RetS pathway. In summary, Mg2+ limitation is a biologically relevant environmental condition and the first bonafide environmental signal identified that results in transcriptional repression of retS and promotes P. aeruginosa biofilm formation
A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination
Mathematical modelling of helminth infections has the potential to inform policy and guide research for the control and elimination of human helminthiases. However, this potential, unlike in other parasitic and infectious diseases, has yet to be realised. To place contemporary efforts in a historical context, a summary of the development of mathematical models for helminthiases is presented. These efforts are discussed according to the role that models can play in furthering our understanding of parasite population biology and transmission dynamics, and the effect on such dynamics of control interventions, as well as in enabling estimation of directly unobservable parameters, exploration of transmission breakpoints, and investigation of evolutionary outcomes of control. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A research and development agenda for helminthiasis modelling is proposed based on identified gaps that need to be addressed for models to become useful decision tools that can support research and control operations effectively. This agenda includes the use of models to estimate the impact of large-scale interventions on infection incidence; the design of sampling protocols for the monitoring and evaluation of integrated control programmes; the modelling of co-infections; the investigation of the dynamical relationship between infection and morbidity indicators; the improvement of analytical methods for the quantification of anthelmintic efficacy and resistance; the determination of programme endpoints; the linking of dynamical helminth models with helminth geostatistical mapping; and the investigation of the impact of climate change on human helminthiases. It is concluded that modelling should be embedded in helminth research, and in the planning, evaluation, and surveillance of interventions from the outset. Modellers should be essential members of interdisciplinary teams, propitiating a continuous dialogue with end users and stakeholders to reflect public health needs in the terrain, discuss the scope and limitations of models, and update biological assumptions and model outputs regularly. It is highlighted that to reach these goals, a collaborative framework must be developed for the collation, annotation, and sharing of databases from large-scale anthelmintic control programmes, and that helminth modellers should join efforts to tackle key questions in helminth epidemiology and control through the sharing of such databases, and by using diverse, yet complementary, modelling approaches
Human Onchocerciasis:Modelling the Potential Long-term Consequences of a Vaccination Programme
<div><p>Background</p><p>Currently, the predominant onchocerciasis control strategy in Africa is annual mass drug administration (MDA) with ivermectin. However, there is a consensus among the global health community, supported by mathematical modelling, that onchocerciasis in Africa will not be eliminated within proposed time frameworks in all endemic foci with only annual MDA, and novel and alternative strategies are urgently needed. Furthermore, use of MDA with ivermectin is already compromised in large areas of central Africa co-endemic with <i>Loa loa</i>, and there are areas where suboptimal or atypical responses to ivermectin have been documented. An onchocerciasis vaccine would be highly advantageous in these areas.</p><p>Methodology/Principal Findings</p><p>We used a previously developed onchocerciasis transmission model (EPIONCHO) to investigate the impact of vaccination in areas where loiasis and onchocerciasis are co-endemic and ivermectin is contraindicated. We also explore the potential influence of a vaccination programme on infection resurgence in areas where local elimination has been successfully achieved. Based on the age range included in the Expanded Programme on Immunization (EPI), the vaccine was assumed to target 1 to 5 year olds. Our modelling results indicate that the deployment of an onchocerciasis vaccine would have a beneficial impact in onchocerciasis–loiasis co-endemic areas, markedly reducing microfilarial load in the young (under 20 yr) age groups.</p><p>Conclusions/Significance</p><p>An onchocerciasis prophylactic vaccine would reduce the onchocerciasis disease burden in populations where ivermectin cannot be administered safely. Moreover, a vaccine could substantially decrease the chance of re-emergence of <i>Onchocerca volvulus</i> infection in areas where it is deemed that MDA with ivermectin can be stopped. Therefore, a vaccine would protect the substantial investments made by present and past onchocerciasis control programmes, decreasing the chance of disease recrudescence and offering an important additional tool to mitigate the potentially devastating impact of emerging ivermectin resistance.</p></div
Progress towards onchocerciasis elimination in the participating countries of the African Programme for Onchocerciasis Control: epidemiological evaluation results
- …
