5,664 research outputs found
Global Continua of Positive Equilibria for some Quasilinear Parabolic Equation with a Nonlocal Initial Condition
This paper is concerned with a quaslinear parabolic equation including a
nonlinear nonlocal initial condition. The problem arises as equilibrium
equation in population dynamics with nonlinear diffusion. We make use of global
bifurcation theory to prove existence of an unbounded continuum of positive
solutions
Required duration of mass ivermectin treatment for onchocerciasis elimination in Africa: a comparative modelling analysis.
BACKGROUND: The World Health Organization (WHO) has set ambitious targets for the elimination of onchocerciasis by 2020–2025 through mass ivermectin treatment. Two different mathematical models have assessed the feasibility of reaching this goal for different settings and treatment scenarios, namely the individual-based microsimulation model ONCHOSIM and the population-based deterministic model EPIONCHO. In this study, we harmonize some crucial assumptions and compare model predictions on common outputs. METHODS: Using a range of initial endemicity levels and treatment scenarios, we compared the models with respect to the following outcomes: 1) model-predicted trends in microfilarial (mf) prevalence and mean mf intensity during 25 years of (annual or biannual) mass ivermectin treatment; 2) treatment duration needed to bring mf prevalence below a provisional operational threshold for treatment interruption (pOTTIS, i.e. 1.4 %), and 3) treatment duration needed to drive the parasite population to local elimination, even in the absence of further interventions. Local elimination was judged by stochastic fade-out in ONCHOSIM and by reaching transmission breakpoints in EPIONCHO. RESULTS: ONCHOSIM and EPIONCHO both predicted that in mesoendemic areas the pOTTIS can be reached with annual treatment, but that this strategy may be insufficient in very highly hyperendemic areas or would require prolonged continuation of treatment. For the lower endemicity levels explored, ONCHOSIM predicted that the time needed to reach the pOTTIS is longer than that needed to drive the parasite population to elimination, whereas for the higher endemicity levels the opposite was true. In EPIONCHO, the pOTTIS was reached consistently sooner than the breakpoint. CONCLUSIONS: The operational thresholds proposed by APOC may have to be adjusted to adequately reflect differences in pre-control endemicities. Further comparative modelling work will be conducted to better understand the main causes of differences in model-predicted trends. This is a pre-requisite for guiding elimination programmes in Africa and refining operational criteria for stopping mass treatment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-1159-9) contains supplementary material, which is available to authorized users
Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs
Dwarf spheroidal (dSph) galaxies are prime targets for present and future
gamma-ray telescopes hunting for indirect signals of particle dark matter. The
interpretation of the data requires careful assessment of their dark matter
content in order to derive robust constraints on candidate relic particles.
Here, we use an optimised spherical Jeans analysis to reconstruct the
`astrophysical factor' for both annihilating and decaying dark matter in 21
known dSphs. Improvements with respect to previous works are: (i) the use of
more flexible luminosity and anisotropy profiles to minimise biases, (ii) the
use of weak priors tailored on extensive sets of contamination-free mock data
to improve the confidence intervals, (iii) systematic cross-checks of binned
and unbinned analyses on mock and real data, and (iv) the use of mock data
including stellar contamination to test the impact on reconstructed signals.
Our analysis provides updated values for the dark matter content of 8
`classical' and 13 `ultrafaint' dSphs, with the quoted uncertainties directly
linked to the sample size; the more flexible parametrisation we use results in
changes compared to previous calculations. This translates into our ranking of
potentially-brightest and most robust targets---viz., Ursa Minor, Draco,
Sculptor---, and of the more promising, but uncertain targets---viz., Ursa
Major 2, Coma---for annihilating dark matter. Our analysis of Segue 1 is
extremely sensitive to whether we include or exclude a few marginal member
stars, making this target one of the most uncertain. Our analysis illustrates
challenges that will need to be addressed when inferring the dark matter
content of new `ultrafaint' satellites that are beginning to be discovered in
southern sky surveys.Comment: 19 pages, 14 figures, submitted to MNRAS. Supplementary material
available on reques
MAGELLAN/M2FS SPECTROSCOPY of the RETICULUM 2 DWARF SPHEROIDAL GALAXY
We present results from spectroscopic observations with the Michigan/Magellan
Fiber System (M2FS) of 182 stellar targets along the line of sight to the
newly-discovered `ultrafaint' object Reticulum 2 (Ret 2). For 38 of these
targets, the spectra are sufficient to provide simultaneous estimates of
line-of-sight velocity (, median random error km s), effective temperature (, K), surface gravity (, dex) and
iron abundance ([Fe/H], dex). We use these
results to confirm 18 stars as members of Ret 2. From the member sample we
estimate a velocity dispersion of km
s about a mean of km
s in the solar rest frame ( km s in the Galactic rest
frame), and a metallicity dispersion of dex about a mean of . These estimates marginalize over possible
velocity and metallicity gradients, which are consistent with zero. Our results
place Ret 2 on chemodynamical scaling relations followed by the Milky Way's
dwarf-galactic satellites. Under assumptions of dynamic equilibrium and
negligible contamination from binary stars---both of which must be checked with
deeper imaging and repeat spectroscopic observations---the estimated velocity
dispersion suggests a dynamical mass of
enclosed within projected halflight radius pc, with
mass-to-light ratio in
solar units
MAGELLAN/M2FS SPECTROSCOPY of the RETICULUM 2 DWARF SPHEROIDAL GALAXY
© 2015. The American Astronomical Society. All rights reserved.We present results from spectroscopic observations with the Michigan/Magellan Fiber System (M2FS) of 182 stellar targets along the line of sight (LOS) to the newly discovered "ultrafaint" object Reticulum 2 (Ret 2). For 37 of these targets, the spectra are sufficient to provide simultaneous estimates of LOS velocity (νlos, median random error δνlos= 1.4 km s-1), effective temperature (Teff, Δ Teff K), surface gravity (loh g, δlog g = 0.63 dex), and iron abundance ([Fe/H], δ[Fe/H] = 0.47 dex). We use these results to confirm 17 stars as members of Ret 2. From the member sample we estimate a velocity dispersion of σνlos = 3.60.7+1.0km s-1 about a mean of 〈νlos〉 = 64.3-1.2+1.2 km s-1 in the solar rest frame ( ∼ -90.9 km s-1 in the Galactic rest frame), and a metallicity dispersion of σ [Fe/H] = 0.49-0.140.19 dex about a mean of 〈 [Fe/H]〉= -2.58-0.33+0.34. These estimates marginalize over possible velocity and metallicity gradients, which are consistent with zero. Our results place Ret 2 on chemodynamical scaling relations followed by the Milky Way's dwarf-galactic satellites. Under assumptions of dynamic equilibrium and negligible contamination from binary stars - both of which must be checked with deeper imaging and repeat spectroscopic observations - the estimated velocity dispersion suggests a dynamical mass of M(Rh)≈5Rhσνlos;2/(2G) = 2.4-0.8+1.4 × 105 M⊙enclosed within projected halflight radius Rh ∼32 pc, with mass-to-light ratio ≈2M (Rh)/LV = 467-168+286in solar units
The N-terminal intrinsically disordered domain of mgm101p is localized to the mitochondrial nucleoid.
The mitochondrial genome maintenance gene, MGM101, is essential for yeasts that depend on mitochondrial DNA replication. Previously, in Saccharomyces cerevisiae, it has been found that the carboxy-terminal two-thirds of Mgm101p has a functional core. Furthermore, there is a high level of amino acid sequence conservation in this region from widely diverse species. By contrast, the amino-terminal region, that is also essential for function, does not have recognizable conservation. Using a bioinformatic approach we find that the functional core from yeast and a corresponding region of Mgm101p from the coral Acropora millepora have an ordered structure, while the N-terminal domains of sequences from yeast and coral are predicted to be disordered. To examine whether ordered and disordered domains of Mgm101p have specific or general functions we made chimeric proteins from yeast and coral by swapping the two regions. We find, by an in vivo assay in S.cerevisiae, that the ordered domain of A.millepora can functionally replace the yeast core region but the disordered domain of the coral protein cannot substitute for its yeast counterpart. Mgm101p is found in the mitochondrial nucleoid along with enzymes and proteins involved in mtDNA replication. By attaching green fluorescent protein to the N-terminal disordered domain of yeast Mgm101p we find that GFP is still directed to the mitochondrial nucleoid where full-length Mgm101p-GFP is targeted
Thermoelastic properties of magnesiowustite, (Mg1-xFex)O: determination of the Anderson-Gruneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures
The ability to perform neutron diffraction studies at simultaneous high pressures and high temperatures is a relatively recent development. The suitability of this technique for determining P-V-T equations of state has been investigated by measuring the lattice parameters of Mg1-xFexO ( x = 0.2, 0.3, 0.4), in the range P < 10.3 GPa and 300 < T < 986 K, by time-of-flight neutron powder diffraction. Pressures were determined using metallic Fe as a marker and temperatures were measured by neutron absorption resonance radiography. Within the resolution of the experiment, no evidence was found for any change in the temperature derivative of the isothermal incompressibility, partial derivative K-T/partial derivative T, with composition. By assuming that the equation-of-state parameters either varied linearly or were invariant with composition, the 60 measured state points were fitted simultaneously to a P-V-T-x equation of state, leading to values of partial derivative K-T/partial derivative T = -0.024 (9) GPa K-1 and of the isothermal Anderson-Gruneisen parameter delta(T) = 4.0 (16) at 300 K. Two designs of simultaneous high-P/T cell were employed during this study. It appears that, by virtue of its extended pressure range, a design using toroidal gaskets is more suitable for equation-of-state studies than is the system described by Le Godec, Dove, Francis, Kohn, Marshall, Pawley, Price, Redfern, Rhodes, Ross, Schofield, Schooneveld, Syfosse, Tucker & Welch [Mineral. Mag. (2001), 65, 737-748]. (c) 2008 International Union of Crystallography Printed in Singapore - all rights reserved
Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement
- …
