15 research outputs found
Cycle-centrality in complex networks
Networks are versatile representations of the interactions between entities
in complex systems. Cycles on such networks represent feedback processes which
play a central role in system dynamics. In this work, we introduce a measure of
the importance of any individual cycle, as the fraction of the total
information flow of the network passing through the cycle. This measure is
computationally cheap, numerically well-conditioned, induces a centrality
measure on arbitrary subgraphs and reduces to the eigenvector centrality on
vertices. We demonstrate that this measure accurately reflects the impact of
events on strategic ensembles of economic sectors, notably in the US economy.
As a second example, we show that in the protein-interaction network of the
plant Arabidopsis thaliana, a model based on cycle-centrality better accounts
for pathogen activity than the state-of-art one. This translates into
pathogen-targeted-proteins being concentrated in a small number of triads with
high cycle-centrality. Algorithms for computing the centrality of cycles and
subgraphs are available for download
A centrality measure for cycles and subgraphs II
In a recent work we introduced a measure of importance for groups of vertices in a complex network. This centrality for groups is always between 0 and 1 and induces the eigenvector centrality over vertices. Furthermore, its value over any group is the fraction of all network flows intercepted by this group. Here we provide the rigorous mathematical constructions underpinning these results via a semi-commutative extension of a number theoretic sieve. We then established further relations between the eigenvector centrality and the centrality proposed here, showing that the latter is a proper extension of the former to groups of nodes. We finish by comparing the centrality proposed here with the notion of group-centrality introduced by Everett and Borgatti on two real-world networks: the Wolfe’s dataset and the protein-protein interaction network of the yeast Saccharomyces cerevisiae. In this latter case, we demonstrate that the centrality is able to distinguish protein complexe
World input-output network
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries
Quantifying economic resilience from input–output susceptibility to improve predictions of economic growth and recovery
Identify and analyze key industries and basic economic structures using interregional industry network
A Network of Networks Perspective on Global Trade
Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990-2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector's role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network's substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to "normal" annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks
