153 research outputs found
Synthetic three-dimensional atomic structures assembled atom by atom
We demonstrate the realization of large, fully loaded, arbitrarily-shaped
three-dimensional arrays of single atoms. Using holographic methods and
real-time, atom-by-atom, plane-by-plane assembly, we engineer atomic structures
with up to 72 atoms separated by distances of a few micrometres. Our method
allows for high average filling fractions and the unique possibility to obtain
defect-free arrays with high repetition rates. These results find immediate
application for the quantum simulation of spin Hamiltonians using Rydberg atoms
in state-of-the-art platforms, and are very promising for quantum-information
processing with neutral atoms.Comment: 5 pages, 3 figure
Out-of-equilibrium physics in driven dissipative coupled resonator arrays
Coupled resonator arrays have been shown to exhibit interesting many- body
physics including Mott and Fractional Hall states of photons. One of the main
differences between these photonic quantum simulators and their cold atoms
coun- terparts is in the dissipative nature of their photonic excitations. The
natural equi- librium state is where there are no photons left in the cavity.
Pumping the system with external drives is therefore necessary to compensate
for the losses and realise non-trivial states. The external driving here can
easily be tuned to be incoherent, coherent or fully quantum, opening the road
for exploration of many body regimes beyond the reach of other approaches. In
this chapter, we review some of the physics arising in driven dissipative
coupled resonator arrays including photon fermionisa- tion, crystallisation, as
well as photonic quantum Hall physics out of equilibrium. We start by briefly
describing possible experimental candidates to realise coupled resonator arrays
along with the two theoretical models that capture their physics, the
Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the
analytical and sophisticated numerical methods required to tackle these systems
is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and
Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by
D.G.Angelakis, Quantum Science and Technology Series, Springer 201
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
Clinical realism: a new literary genre and a potential tool for encouraging empathy in medical students
Background: Empathy has been re-discovered as a desirable quality in doctors. A number of approaches using the medical humanities have been advocated to teach empathy to medical students. This paper describes a new approach using the medium of creative writing and a new narrative genre: clinical realism. Methods: Third year students were offered a four week long Student Selected Component (SSC) in Narrative Medicine and Creative Writing. The creative writing element included researching and creating a character with a life-changing physical disorder without making the disorder the focus of the writing. The age, gender, social circumstances and physical disorder of a character were randomly allocated to each student. The students wrote repeated assignments in the first person, writing as their character and including details of living with the disorder in all of their narratives. This article is based on the work produced by the 2013 cohort of students taking the course, and on their reflections on the process of creating their characters. Their output was analysed thematically using a constructivist approach to meaning making. Results: This preliminary analysis suggests that the students created convincing and detailed narratives which included rich information about living with a chronic disorder. Although the writing assignments were generic, they introduced a number of themes relating to illness, including stigma, personal identity and narrative wreckage. Some students reported that they found it difficult to relate to “their” character initially, but their empathy for the character increased as the SSC progressed. Conclusion: Clinical realism combined with repeated writing exercises about the same character is a potential tool for helping to develop empathy in medical students and merits further investigation
Identifying educator behaviours for high quality verbal feedback in health professions education: literature review and expert refinement
Background
Health professions education is characterised by work-based learning and relies on effective verbal feedback. However the literature reports problems in feedback practice, including lack of both learner engagement and explicit strategies for improving performance. It is not clear what constitutes high quality, learner-centred feedback or how educators can promote it. We hoped to enhance feedback in clinical practice by distinguishing the elements of an educator’s role in feedback considered to influence learner outcomes, then develop descriptions of observable educator behaviours that exemplify them.
Methods
An extensive literature review was conducted to identify i) information substantiating specific components of an educator’s role in feedback asserted to have an important influence on learner outcomes and ii) verbal feedback instruments in health professions education, that may describe important educator activities in effective feedback. This information was used to construct a list of elements thought to be important in effective feedback. Based on these elements, descriptions of observable educator behaviours that represent effective feedback were developed and refined during three rounds of a Delphi process and a face-to-face meeting with experts across the health professions and education.
Results
The review identified more than 170 relevant articles (involving health professions, education, psychology and business literature) and ten verbal feedback instruments in health professions education (plus modified versions). Eighteen distinct elements of an educator’s role in effective feedback were delineated. Twenty five descriptions of educator behaviours that align with the elements were ratified by the expert panel.
Conclusions
This research clarifies the distinct elements of an educator’s role in feedback considered to enhance learner outcomes. The corresponding set of observable educator behaviours aim to describe how an educator could engage, motivate and enable a learner to improve. This creates the foundation for developing a method to systematically evaluate the impact of verbal feedback on learner performance
Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model
Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities
Brand names of Portuguese medication: understanding the importance of their linguistic structure and regulatory issues
U.S. Multicenter Pilot Study of Daily Consensus Interferon (CIFN) Plus Ribavirin for “Difficult-to-Treat” HCV Genotype 1 Patients
Cost-effectiveness and budget impact analyses of a colorectal cancer screening programme in a high adenoma prevalence scenario using MISCAN-Colon microsimulation model
This economic evaluation showed a screening intervention with a major health gain that also produced net savings when a long follow-up was used to capture the late economic benefit. The number of colonoscopies required was high but remain within the capacity of the Basque Health Service. So far in Europe, no other population Colorectal Cancer screening programme has been evaluated by budget impact analysis
Transition to a Bose-Einstein condensate of excitons at sub-Kelvin temperatures
Bose-Einstein condensation (BEC) is a quantum mechanical phenomenon directly
linked to the quantum statistics of bosons. While cold atomic gases provide a
new arena for exploring the nature of BEC, a long-term quest to confirm BEC of
excitons, quasi-Bose particles formed as a bound state of an electron-hole
pair, has been underway since its theoretical prediction in the 1960s.
Ensembles of electrons and holes are complex quantum systems with strong
Coulomb correlations; thus, it is non-trivial whether nature chooses a form of
exciton BEC. Various systems have been examined in bulk and two-dimensional
semiconductors and also exciton-photon hybrid systems. Among them, the 1s
paraexciton state in a single crystal of Cu2O has been a prime candidate for
realizing three-dimensional BEC. The large binding energy and long lifetime
enable preparation of cold excitons in thermal equilibrium with the lattice and
decoupled from the radiation field. However, collisional loss severely limits
the conditions for reaching BEC. Such a system with a large inelastic cross
section is excluded in atomic BEC experiments, where a small inelastic
scattering rate and efficient elastic scattering are necessary for evaporative
cooling. Here we demonstrate that it is nevertheless possible to achieve BEC by
cooling paraexcitons to sub-Kelvin temperatures in a cold phonon bath. Emission
spectra from paraexcitons in a three-dimensional trap show an anomalous
distribution in a threshold-like manner at the critical number of BEC expected
for ideal bosons. Bosonic stimulated scattering into the condensate and
collisional loss compete and limit the condensate to a fraction of about 1%.
This observation adds a new class of experimentally accessible BEC for
exploring a rich variety of matter phases of electron-hole ensembles.Comment: 19 pages, 3 figures, Supplementary Information (12 pages, 4 figures)
include
- …
