48 research outputs found
A review of combined advanced oxidation technologies for the removal of organic pollutants from water
Water pollution through natural and anthropogenic activities has become a global problem causing short-and long-term impact on human and ecosystems. Substantial quantity of individual or mixtures of organic pollutants enter the surface water via point and nonpoint sources and thus affect the quality of freshwater. These pollutants are known to be toxic and difficult to remove by mere biological treatment. To date, most researches on the removal of organic pollutants from wastewater were based on the exploitation of individual treatment process. This single-treatment technology has inherent challenges and shortcomings with respect to efficiency and economics. Thus, application of two advanced treatment technologies characterized with high efficiency with respect to removal of primary and disinfection by-products in wastewater is desirable. This review article focuses on the application of integrated technologies such as electrohydraulic discharge with heterogeneous photocatalysts or sonophotocatalysis to remove target pollutants. The information gathered from more than 100 published articles, mostly laboratories studies, shows that process integration effectively remove and degrade recalcitrant toxic contaminants in wastewater better than single-technology processing. This review recommends an improvement on this technology (integrated electrohydraulic discharge with heterogeneous photocatalysts) viz-a-vis cost reduction in order to make it accessible and available in the rural and semi-urban settlement. Further recommendation includes development of an economic model to establish the cost implications of the combined technology. Proper monitoring, enforcement of the existing environmental regulations, and upgrading of current wastewater treatment plants with additional treatment steps such as photocatalysis and ozonation will greatly assist in the removal of environmental toxicants
Temporal change in minimum mortality temperature under changing climate A multicountry multicommunity observational study spanning 1986–2015
Background: The minimum mortality temperature (MMT) or MMT percentile (MMTP) is an indicator of population susceptibility to nonoptimum temperatures. MMT and MMTP change over time; however, the changing directions show region-wide heterogeneity. We examined the heterogeneity of temporal changes in MMT and MMTP across multiple communities and in multiple countries. Methods: Daily time-series data for mortality and ambient mean temperature for 699 communities in 34 countries spanning 1986–2015 were analyzed using a two-stage meta-analysis. First, a quasi-Poisson regression was employed to estimate MMT and MMTP for each community during the designated subperiods. Second, we pooled the community-specific temporally varying estimates using mixed-effects meta-regressions to examine temporal changes in MMT and MMTP in the entire study population, as well as by climate zone, geographical region, and country. Results: Temporal increases in MMT and MMTP from 19.5 °C (17.9, 21.1) to 20.3 °C (18.5, 22.0) and from the 74.5 (68.3, 80.6) to 75.0 (71.0, 78.9) percentiles in the entire population were found, respectively. Temporal change was significantly heterogeneous across geographical regions (P < 0.001). Temporal increases in MMT were observed in East Asia (linear slope [LS] = 0.91, P = 0.02) and South-East Asia (LS = 0.62, P = 0.05), whereas a temporal decrease in MMT was observed in South Europe (LS = −0.46, P = 0.05). MMTP decreased temporally in North Europe (LS = −3.45, P = 0.02) and South Europe (LS = −2.86, P = 0.05). Conclusions: The temporal change in MMT or MMTP was largely heterogeneous. Population susceptibility in terms of optimum temperature may have changed under a warming climate, albeit with large region-dependent variations. Copyright © 2024 The Authors. Published by Wolters Kluwer Health, Inc
Comparison for the effects of different components of temperature variability on mortality: A multi-country time-series study
Background: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. Objectives: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. Methods: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. Results: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0–7 (0.9 °C). An IQR increase in inter-day TV0–7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0–7 and inter-day TV0–7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. Conclusions: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health. © 2024This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (GNT2000581). BW by China Scholarship Council (number 202006010043); WY by China Scholarship Council (number 202006010044); SL by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (number GNT2009866); JK and AU by the Czech Science Foundation (project number 20–28560S); NS by the National Institute of Environmental Health Sciences-funded HERCULES Center (P30ES019776); S-CP and YLG by the Ministry of Science and Technology (Taiwan; MOST 109–2621-M-002–021); YH by the Environment Research and Technology Development Fund (JPMEERF15S11412) of the Environmental Restoration and Conservation Agency; MdSZSC and PHNS by the São Paulo Research Foundation (FAPESP); ST by the Science and Technology Commission of Shanghai Municipality (grant number 18411951600); HO and EI by the Estonian Ministry of Education and Research (IUT34–17); JM by a fellowship of Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016); AG by the Medical Research Council UK (grant IDs: MR/V034162/1 and MR/R013349/1), the Natural Environment Research Council UK (grant ID: NE/R009384/1), and the EU's Horizon 2020 project, Exhaustion (grant ID: 820655); AS, SR, and FdD by the EU's Horizon 2020 project, Exhaustion (grant ID 820655); VH by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046); AT by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S); YG by Career Development Fellowship (number GNT1163693) and Leader Fellowship (number GNT2008813) of the Australian National Health and Medical Research Council; Statistics South Africa kindly provided the mortality data, but had no other role in the study. This Article is published in memory of Simona Fratianni who helped to contribute the data for Romania
Joint effect of heat and air pollution on mortality in 620 cities of 36 countries
Background
The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent.
Objectives
To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries.
Methods
We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 μm (PM10), PM ≤ 2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995–2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants.
Results
We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 μg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 μg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 μg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2.
Conclusions
Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.Massimo Stafoggia, Francesca K. de’ Donato, Masna Rai and Alexandra Schneider were partially supported by the European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). Jan Kyselý and Aleš Urban were supported by the Czech Science Foundation project (22-24920S). Joana Madureira was supported by the Fundação para a Ciência e a Tecnologia (FCT) (grant SFRH/BPD/115112/2016). Masahiro Hashizume was supported by the Japan Science and Technology Agency (JST) as part of SICORP, Grant Number JPMJSC20E4. Noah Scovronick was supported by the NIEHS-funded HERCULES Center (P30ES019776). South African Data were provided by Statistics South Africa, which did not have any role in conducting the study. Antonio Gasparrini was supported by the Medical Research Council-UK (Grants ID: MR/V034162/1 and MR/R013349/1), the Natural Environment Research Council UK (Grant ID: NE/R009384/1), and the European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655)
Temperature frequency and mortality: Assessing adaptation to local temperature
Assessing the association between temperature frequency and mortality can provide insights into human adaptation to local ambient temperatures. We collected daily time-series data on mortality and temperature from 757 locations in 47 countries/regions during 1979–2020. We used a two-stage time series design to assess the association between temperature frequency and all-cause mortality. The results were pooled at the national, regional, and global levels. We observed a consistent decrease in the risk of mortality as the normalized frequency of temperature increases across the globe. The average increase in mortality risk comparing the 10th to 100th percentile of normalized frequency was 13.03% (95% CI: 12.17–13.91), with substantial regional differences (from 4.56% in Australia and New Zealand to 33.06% in South Europe). The highest increase in mortality was observed for high-income countries (13.58%, 95% CI: 12.56–14.61), followed by lower-middle-income countries (12.34%, 95% CI: 9.27–15.51). This study observed a declining risk of mortality associated with higher temperature frequency. Our findings suggest that populations can adapt to their local climate with frequent exposure, with the adapting ability varying geographically due to differences in climatic and socioeconomic characteristics. © 2024his article appreciates the contribution of MCC network collaborators. This article is published in memory of Simona Fratianni who helped to contribute the data for Romania. Support for title page creation and format was provided by AuthorArranger, a tool developed at the National Cancer Institute. This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (GNT2000581). YW and BW were supported by China Scholarship Council [grant numbers 202006010044 and 202006010043]. AU was supported by the Czech Science Foundation (project number 22-24920S); PHNS by the São Paulo Research Foundation (FAPESP); ST by the Science and Technology Commission of Shanghai Municipality (grant number 18411951600); AG and FS by the Medical Research Council UK (grant ID MR/R013349/1), the Natural Environment Research Council UK (grant ID NE/R009384/1), and the EU’s Horizon 2020 project, Exhaustion (grant ID 820655); FdD by the EU’s Horizon 2020 project, Exhaustion (grant ID 820655). SL was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (GNT2009866). YG was supported by the Career Development Fellowship (GNT1163693) and Leader Fellowship (GNT2008813) of the Australian National Health and Medical Research Council. The funders had no role in study design, data collection, analysis, decision to publish, or preparation of the manuscript
Comparison of weather station and climate reanalysis data for modelling temperature-related mortality
Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk. © 2022, The Author(s).The original version of this Article contained an error in Affiliation 25, which was incorrectly given as ‘Faculty of Medicine ArqFuturo INSPER, University of São Paulo, São Paulo, Brazil’. The correct affiliation is listed below. Faculty of Medicine, University of São Paulo, São Paulo, Brazil The original Article has been corrected. © The Author(s) 2022.The study was primarily supported by Grants from the European Commission’s Joint Research Centre Seville (Research Contract ID: JRC/SVQ/2020/MVP/1654), Medical Research Council-UK (Grant ID: MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). The following individual Grants also supported this work: J.K and A.U were supported by the Czech Science Foundation, project 20-28560S. A.T was supported by MCIN/AEI/10.13039/501100011033, Grant CEX2018-000794-S. V.H was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 101032087. This work was generated using Copernicus Climate Change Service (C3S) information [1985–2019]
Regional variation in the role of humidity on city-level heat-related mortality
The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems. © The Author(s) 2024.Q.G., M.H., and T.O. were supported by the Environment Research and Technology Development Fund (JPMEERF23S21120) of the Environmental Restoration and Conservation Agency provided by the Ministry of the Environment of Japan. Q.G. was supported by the Musha Shugyo international travel grants from the School of Engineering, The University of Tokyo. T.O. was supported by the Japan Society for the Promotion of Science (KAKENHI: 21H05002), and the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan (JPMEERF23S21100). M.N.M. was supported by the European Commission (H2020-MSCA-IF-2020) under REA grant agreement no. 101022870. A.G. was supported by the Medical Research Council-UK (Grant ID: MR/V034162/1) and European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). J.K. was supported by the Czech Science Foundation, project 23-06749S. A.M.V.-C. supported by the Swiss National Science Foundation (TMSGI3_211626). V.H. was supported by the European Union’s Horizon 2020 research and innovation program (H2020-MSCA-IF-2020, Grant No.: 101032087). Y.S. was supported by Brain Pool Plus program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2021H1D3A2A03097768), and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2023R1A2C1004754)
Ultrasound-assisted extraction of natural products
Ultrasound-assisted extraction (USAE) is an interesting process to obtain high valuable compounds and could contribute to the increase in the value of some food by-products when used as sources of natural compounds. The main benefits will be a more effective extraction, thus saving energy, and also the use of moderate temperatures, which is beneficial for heat-sensitive compounds. For a successful application of the USAE, it is necessary to consider the influence of several process variables, the main ones being the applied ultrasonic power, the frequency, the extraction temperature, the reactor characteristics, and the solvent-sample interaction. The highest extraction rate is usually achieved in the first few minutes, which is the most profitable period. To optimize the process, rate equations and unambiguous process characterization are needed, aspects that have often been lacking. © 2011 Springer Science+Business Media, LLC.The authors thank the Generalitat Valenciana for their financial support in project PROMETEO/2010/062 and the Caja de Ahorros del Mediterraneo for M.D. Esclapez's pre-doctoral grant.Esclapez Vicente, MD.; García Pérez, JV.; Mulet Pons, A.; Cárcel Carrión, JA.; Esclapez, MD. (2011). Ultrasound-assisted extraction of natural products. Food Engineering Reviews. 3(2):108-120. https://doi.org/10.1007/s12393-011-9036-6S10812032Abad Romero B, Bou-Maroun E, Reparet JM, Blanquet J, Cayot N (2010) Impact of lipid extraction on the dearomatisation of an Eisenia foetida protein powder. Food Chem 119:459–466Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715Atchley AA, Crum LA (1988) Acoustic cavitation and bubble dynamics. In: Suslick KS (ed) Ultrasound, its chemical, physical, and biological effects. VHS Publishers, Weinheim, pp 1–64Arnold G, Leiteritz L, Zahn S, Rohm H (2009) Ultrasonic cutting of cheese: composition affects cutting work reduction and energy demand. Int Dairy J 19:314–320Barbero GF, Liazid A, Palma M, Barroso CG (2008) Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta 75:1332–1337Benedito J, Carcel JA, Sanjuan N, Mulet A (2000) Use of ultrasound to assess Cheddar cheese characteristics. Ultrasonics 38:727–730Benedito J, Carcel JA, Rossello C, Mulet A (2001) Composition assessment of raw meat mixtures using ultrasonics. Meat Sci 57:365–370Bhaskaracharya RK, Kentish S, Ashokkumar M (2009) Selected applications of ultrasonics in food processing. Food Eng Rev 1:31–49Boonkird S, Phisalaphong C, Phisalaphong M (2008) Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrason Sonochem 15:1075–1079Cárcel JA, Benedito J, Bon J, Mulet A (2007) High intensity ultrasound effects on meat brining. Meat Sci 76:611–619Cárcel JA, Benedito J, Rosselló C, Mulet A (2007) Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. J Food Eng 78:472–479Cavitus (2009) Grape colour and flavour extraction (Pat. Pend.) for red must extraction http://www.cavitus.com . Crafers. Accessed 10 Jan 2011Chea Chua S, Ping Tan C, Mirhosseini H, Ming Lai O, Long K, Sham Baharin B (2009) Optimization of ultrasound extraction condition of phospholipids from palm-pressed fiber. J Food Eng 92:403–409Chena R, Menga F, Zhang S, Liu Z (2009) Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Sep Purif Technol 66:340–346Chivate MM, Pandit AB (1995) Quantification of cavitation intensity in fluid bulk. Ultrason Sonochem 2:19–25Da Porto C, Decorti D (2009) Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvone-rich) plants: comparison with conventional hydrodistillation. Ultrason Sonochem 16:795–799Da Porto C, Decorti D, Kikic I (2009) Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem 112:1072–1078Domínguez H, Núñez MJ, Lema JM (1994) Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chem 49:271–286Dong J, Liu Y, Liang Z, Wanga W (2010) Investigation on ultrasound-assisted extraction of salvianolic acid B from Salvia miltiorrhiza root. Ultrason Sonochem 17:61–65Entezari MH, Kruus P (1994) Effect of frequency on sonochemical reactions. I: oxidation of iodide. Ultrason Sonochem 1:75–79Esclapez MD, Sáez V, Milán-Yáñez D, Tudela I, Louisnard O, González-García J (2010) Sonoelectrochemical treatment of water polluted with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010–1020Ferraro V, Cruz IB, Ferreira R, Malcata JFX, Pintado ME, Castro PML (2010) Valorisation of natural extracts from marine source focused on marine by-products: review. Food Res Int 43:2221–2233Fischer CH, Hart EJ, Henglein AJ (1986) Hydrogen/deuterium isotope exchange in the hydrogen deuteride-water system under the influence of ultrasound. Phys Chem 90:3059–3060Garcia-Noguera J, Weller CL, Oliveira FIP, Rodrigues S, Fernandes FAN (2010) Dual-stage sugar substitution in strawberries with a Stevia-based sweetener. Innovative Food Sci Emerg Technol 11:225–230García-Pérez JV, Cárcel JA, de la Fuente-Blanco S, Riera-Franco de Sarabia E (2006) Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics 44:539–543García-Pérez JV, García-Alvarado MA, Carcel JA, Mulet A (2010) Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): Influence of drying conditions. J Food Eng 101:49–58González-García J, Sáez V, Tudela I, Díez-Garcia MI, Esclapez MD, Louisnard O (2010) Sonochemical treatment of water polluted by chlorinated organocompounds. A review. Water 2:28–74Handa SS, Preet S, Khanuja S, Longo G, Rakesh DD (2008) Extraction Technologies for Medicinal and Aromatic Plants. United Nations Industrial Development Organization and the International Centre for Science and High Technology, TriesteHemwimol S, Pavasant P, Shotipruk A (2006) Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason Sonochem 13:543–548Hielscher (2011) Teltow http:// www.hielscher.com . Accessed 10 Jan 2011Hu Y, Wang T, Wang M, Han S, Wan P, Fan M (2008) Extraction of isoflavonoids from Pueraria by combining ultrasound with microwave vacuum. Chem Engin Process 47:2256–2261Ince NH, Tezcanli G, Belen RK, Apikyan PG (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B 29:167–176Jadhav D, Rekha BN, Gogate PR, Rathod VK (2009) Extraction of vanillin from vanilla pods: a comparison study of conventional soxhlet and ultrasound assisted extraction. J Food Eng 93:421–426Ji J-b, Lu X-h, Cai M-q, Xu C-c (2006) Improvement of leaching process of Geniposide with ultrasound. Ultrason Sonochem 13:455–462Kanthale PM, Gogate PR, Pandit AB, Wilhelm AM (2003) Mapping of an ultrasonic horn: link primary and secondary effects of ultrasound. Ultrason Sonochem 10:331–335Karki B, Lamsal BP, Jung S, van Leeuwen JH, Pometto AL III, Grewell D, Khanal SK (2010) Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J Food Eng 96:270–278Kardos N, Luche J-L (2001) Sonochemistry of carbohydrate compounds. Carbohydr Res 332:115–131Kotronarou A, Mills G, Hoffmann MR (1991) Ultrasonic Irradiation of para-Nitrophenol in Aqueous Solution. J Phys Chem 95:3630–3638Kuijpers MWA, Kemmere MF, Keurentjes JTF (2002) Calorimetric study of the energy efficiency for ultrasound-induced radical formation. Ultrasonics 40:675–678Leighton TG (2007) What is ultrasound? Prog Biophys Mol Biol 93:3–83Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49:885–900Li H, Pordesimo L, Weiss J (2004) High intensity ultrasound-assisted extraction of oil from soybeans. Food Res Int 37:731–738Liu J, Li J-W, Tang J (2010) Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process 88:215–221Lianfu Z, Zelong L (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731–737Liazid A, Schwarz M, Varela RM, Palma M, Guillén DA, Brigui J, Macías FA, Barroso CG (2010) Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds. Food Bioprod Process 88:247–252Londoño-Londoño J, Rodrigues de Lima V, Lara O, Gil A, Crecsynski Pasa TB, Arango GJ, Ramirez Pineda JR (2010) Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem 119:81–87Lou Z, Wang H, Zhang M, Wang Z (2010) Improved extraction of oil from chickpea under ultrasound in a dynamic system. J Food Eng 98:13–18Louisnard O, González-García J, Tudela I, Klima J, Sáez V, Vargas-Hernández Y (2009) FEM simulation of a sono-reactor accounting for vibrations of the boundaries. Ultrason Sonochem 16:250–259Luque de Castro MD, Priego-Capote F (2007) Analytical Applications of Ultrasound, Vol. 26, Techniques and Instrumentation in Analytical Chemistry. Elsevier Science, AmsterdamMa Y, Ye X, Hao Y, Xu G, Xu G, Liu D (2008) Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason Sonochem 15:227–232Ma Y, Chen J-C, Liu Dong-Hong, Ye X-Q (2009) Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem 16:57–62Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot. OH and. cntdot. H) by spin trapping. J Chem Soc 104:3537–3539Margulis MA, Margulis IM (2003) Calorimetric method for measurement of acoustic power absorbed in a volume of liquid. Ultrason Sonochem 10:343–345Martin CJ, Law ANR (1983) Design of thermistor probes for measurement of ultrasound intensity distributions. Ultrasonics 21:85–90Mason TJ, Lorimer JP, Bates DM, Zhao Y (1994) Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem 1:91–95Meinhardt (2011) Leipzig. http://www.meinhardt-ultraschall.de . Accessed 10 Jan 2011Montalbo-Lomboy M, Khanal SK, van Leeuwen JH, Raman DR, Dunn L Jr, Grewell D Jr (2010) Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous Systems. Ultrason Sonochem 17:939–946Mulet A, Cárcel JA, Sanjuán N, Bon J (2003) New food drying technologies. Use of ultrasound. Food Sci Technol Int 9:215–221Naguleswaran S, Vasanthan T (2010) Dry milling of field pea (Pisum sativum L.) groats prior to wet fractionation influences the starch yield and purity. Food Chem 118:627–633Orozco-Solano M, Ruiz-Jiménez J, Luque de Castro MD (2010) Ultrasound-assisted extraction and derivatization of sterols and fatty alcohols from olive leaves and drupes prior to determination by gas chromatography–tandem mass spectrometry. J Chromatogr A 1217:1227–1235Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innovative Food Sci Emerg Technol 9:147–154Price GJ (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason TJ (ed) Advances in sonochemistry, vol 1. Jai Press, Cambridge, pp 231–287Riener J, Noci G, Cronin DA, Morgan DJ, Lyng JG (2010) A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chem 119:1108–1113Riera E, Golás Y, Blanco A, Gallego JA, Blasco M, Mulet A (2004) Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason Sonochem 11:241–244Riera E, Blanco A, García J, Benedito J, Mulet A, Gallego-Juárez JA, Blasco M (2010) High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Physics Procedia 3:141–146Roldán-Gutiérrez JM, Ruiz-Jiménez J, Luque de Castro MD (2008) Ultrasound-assisted dynamic extraction of valuable compounds from aromatic plants and flowers as compared with steam distillation and superheated liquid extraction. Talanta 75:1369–1375Romdhane M, Gourdon C (2002) Investigation in solid–liquid extraction: influence of ultrasound. Chem Eng J 87:11–19Rong L, Kojima Y, Koda S, Nomura H (2008) Simple quantification of ultrasonic intensity using aqueous solution of phenolphthalein. Ultrason Sonochem 8:11–15Sáez V, Frias-Ferrer A, Iniesta J, Gonzalez-Garcıa J, Aldaz A, Riera E (2005) Chacterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods. Ultrason Sonochem 12:59–65Sáez V, Frias-Ferrer A, Iniesta J, Gonzalez-Garcıa J, Aldaz A, Riera E (2005) Characterization of a 20 kHz sonoreactor. Part II: analysis of chemical effects by classical and electrochemical methods. Ultrason Sonochem 12:67–72Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extraction–A review. J Food Eng 95:240–253Science Direct Database (2011) www.sciencedirect.com (Data of consulting: February 2011)Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331Starmans DAJ, Nijhuis HH (1996) Extraction of secondary metabolites from plant material: a review. Trends Food Sci Technol 7:191–197Sivakumar V, Lakshmi Anna J, Vijayeeswarri J, Swaminathan G (2009) Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrason Sonochem 16:782–789Stanisavljevic IT, Lazic ML, Veljkovic VB (2007) Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrason Sonochem 14:646–652Sun Y, Liu D, Chen J, Ye X, Yu D (2011) Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-b-carotene from citrus peels. Ultrason Sonochem 18:243–249Suslick KS (2001) Sonoluminescence and sonochemistry. In: Meyers RA (ed) Encyclopedia of physical science and technology, vol 17, 3rd edn. Academic Press, San Diego, pp 363–376Trabelsi F, Ait-Iyazidi H, Berlan J, Fabre PL, Delmas H, Wilhelm AM (1996) Electrochemical determination of the active zones in a high-frequency ultrasonic reactor. Ultrason Sonochem 3:125–130Veillet S, Tomao V, Chemat F (2010) Ultrasound assisted maceration: an original procedure for direct aromatisation of olive oil with basil. Food Chem 123:905–911Velickovic DT, Milenovic DM, Ristic MS, Veljkovic VB (2008) Ultrasonic extraction of waste solid residues from the Salvia sp. Essential oil hydrodistillation. Biochem Eng J 42:97–104Vercet A, Burgos J, Crelier S, Lopez-Buesa P (2001) Inactivation of proteases and lipases by ultrasound. Innovative Food Sci Emerg Technol 2:139–150Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innovative Food Sci Emerg Technol 9:161–169Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313Virot M, Tomao V, Le Bourvellec C, Renard CMCG, Chemat F (2010) Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason Sonochem 17:1066–1074Wang J, Sun B, Cao Y, Tian Y, Li X (2008) Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 106:804–810Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312Wei X, Chen M, Xiao Ja, Liu Y, Yu L, Zhang H, Wang Y (2010) Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr Polym 79:418–422Weissler A, Cooper HW, Snyder S (1950) Chemical effects of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Am Chem Soc 72:1769–1775Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz MJ, Martín-Rodríguez A (2009) Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids 23:1096–1102Yang B, Yang H, Li J, Li Z, Jiang Y (2011) Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chem 124:551–555Yang Y, Zhang F (2008) Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrason Sonochem 15:308–313Zhang Z-S, Wang L-J, Li D, Jiao S-S, Chena XD, Maoa Z-H (2008) Ultrasound-assisted extraction of oil from flaxseed. Sep Purif Technol 62:192–198Zhang H-F, Yang X-H, Zhao L-D, Wang Y (2009) Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innovative Food Sci Emerg Technol 10:54–60Zhang Q-A, Zhang Z-Q, Yue X-F, Fan X-H, Li T, Chen S-F (2009) Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem 116:513–518Zhao S, Kwok K-C, Liang H (2007) Investigation on ultrasound assisted extraction of saikosaponins from Radix Bupleuri. Sep Purif Technol 55:307–312Zhu KX, Sun X-H, Zhou H-M (2009) Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. J Cereal Sci 50:266–271Zheng L, Sun D-W (2006) Innovative applications of power ultrasound during food freezing processes—a review. Trends Food Sci Technol 17:16–23Zou Y, Xie C, Fan G, Gu Z, Han Y (2010) Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innovative Food Sci Emerg Technol 11:611–61
The burden of heat-related mortality attributable to recent human-induced climate change
Medical Research Council-UK (Grant ID: MR/M022625/1); Natural Environment Research Council UK (Grant ID: NE/R009384/1); European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655); N. Scovronick
was supported by the NIEHS-funded HERCULES Center (P30ES019776); Y. Honda was supported by the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency, Japan (JPMEERF15S11412); J. Jaakkola was supported by Academy of Finland (Grant No. 310372); V. Huber was supported by the Spanish Ministry of Economy, Industry and Competitiveness (Grant ID: PCIN-2017-046) and the German Federal Ministry of Education and Research (Grant ID: 01LS1201A2); J Kysely and A. Urban were supported by the Czech Science Foundation (Grant ID: 20-28560S); J. Madureira was supported by the Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/115112/2016); S. Rao and F. di Ruscio were supported by European Union’s Horizon 2020 Project EXHAUSTION (Grant ID: 820655); M. Hashizume was supported by the Japan Science and Technology Agency (JST) as part of SICORP, Grant Number JPMJSC20E4; Y. Guo was supported by the Career Development Fellowship of the Australian National Health and Medical Research Council (#APP1163693); S. Lee was support by the Early Career Fellowship of the Australian National Health and Medical Research Council (#APP1109193)
Seasonal variation in mortality and the role of temperature: a multi-country multi-city study
Data availability: Data have been collected within the MCC (Multi-Country Multi-City) Collaborative Research Network (https://mccstudy.lshtm.ac.uk) under a data-sharing agreement and cannot be made publicly available. The R code for the analysis is available from the first author.Copyright . Background:
Although seasonal variations in mortality have been recognized for millennia, the role of temperature remains unclear. We aimed to assess seasonal variation in mortality and to examine the contribution of temperature.
Methods:
We compiled daily data on all-cause, cardiovascular and respiratory mortality, temperature and indicators on location-specific characteristics from 719 locations in tropical, dry, temperate and continental climate zones. We fitted time-series regression models to estimate the amplitude of seasonal variation in mortality on a daily basis, defined as the peak-to-trough ratio (PTR) of maximum mortality estimates to minimum mortality estimates at day of year. Meta-analysis was used to summarize location-specific estimates for each climate zone. We estimated the PTR with and without temperature adjustment, with the differences representing the seasonal effect attributable to temperature. We also evaluated the effect of location-specific characteristics on the PTR across locations by using meta-regression models.
Results:
Seasonality estimates and responses to temperature adjustment varied across locations. The unadjusted PTR for all-cause mortality was 1.05 [95% confidence interval (CI): 1.00–1.11] in the tropical zone and 1.23 (95% CI: 1.20–1.25) in the temperate zone; adjusting for temperature reduced the estimates to 1.02 (95% CI: 0.95–1.09) and 1.10 (95% CI: 1.07–1.12), respectively. Furthermore, the unadjusted PTR was positively associated with average mean temperature.
Conclusions:
This study suggests that seasonality of mortality is importantly driven by temperature, most evidently in temperate/continental climate zones, and that warmer locations show stronger seasonal variations in mortality, which is related to a stronger effect of temperature.This work was primarily supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI [Grant Number 19K19461]. Y.C. was supported by a Senior Research grant [2019R1A2C1086194] from the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT (Information and Communication Technologies). V.H. received support from the Spanish Ministry of Economy, Industry and Competitiveness [Grant ID: PCIN-2017-046]. J.K. and A.U. were supported by the Czech Science Foundation [project 18-22125S]. A.S. acknowledged funding from European Union’s Horizon 2020 research and innovation programme under grant agreement No 820655 (EXHAUSTION). A.G. was supported by the Medical Research Council-UK [Grant ID: MR/R013349/1], the Natural Environment Research Council UK [Grant ID: NE/R009384/1] and the European Union’s Horizon 2020 Project Exhaustion [Grant ID: 820655]. M.H. was supported by the Japan Science and Technology Agency (JST) as part of SICORP [Grant Number JPMJSC20E4]
