8,525 research outputs found
End-to-End Localization and Ranking for Relative Attributes
We propose an end-to-end deep convolutional network to simultaneously
localize and rank relative visual attributes, given only weakly-supervised
pairwise image comparisons. Unlike previous methods, our network jointly learns
the attribute's features, localization, and ranker. The localization module of
our network discovers the most informative image region for the attribute,
which is then used by the ranking module to learn a ranking model of the
attribute. Our end-to-end framework also significantly speeds up processing and
is much faster than previous methods. We show state-of-the-art ranking results
on various relative attribute datasets, and our qualitative localization
results clearly demonstrate our network's ability to learn meaningful image
patches.Comment: Appears in European Conference on Computer Vision (ECCV), 201
SUMO chain formation is required for response to replication arrest in S. pombe
SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb
Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution
Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system
Bio-nanotechnology application in wastewater treatment
The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed
Conjugated polyelectrolyte nano field emission adlayers.
Here we report on a straightforward and rapid means of enhancing the field electron emission performance of nascent vertically aligned multi-walled carbon nanotubes by introducing a polar zwitterionic conjugated polyelectrolyte adlayer at the vacuum-emitter interface. We attribute the observed 66% decrease in turn-on electric field to the augmented emitter micro-morphology and shifted surface band structure. The composite emitters can be optically modulated by exploiting the absorption cross-section of the solution cast adlayer, which increases the local carrier concentration which broadens the effective electrostatic shape of the emitter during optical excitation. Assessment via scanning anode field emission microscopy reveals a 25% improvement in DC time stability, a significant reduction in long-term hysteresis shift, and a threefold increase in bandwidth during pulsed mode operation.Oppenheimer TrustThis is the final version of the article. It first appeared from the Royal Society of Chemistry via http://dx.doi.org/10.1039/c6nh00071
Microstructural evolution under low shear rates during Rheo processing of LM25 alloy
© ASM InternationalMicrostructural features of LM25 alloy processed by two different routes: (1) conventional casting, and(2)shear casting based on inclined heated surface are studied. The microstructures of the primary phase for the shear-cast samples show rosette or ellipsoidal morphologies. Heat transfer of contacting melt with the
inclined tube surface and shear stress exerted on the layers of the melt as result of gravitational force are crucial parameters for the microstructural evolution. Compared to those produced by conventional casting, shear-cast samples have a much improved tensile strength and ductility due to globular microstructure
Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films
Crystalline Silicon-on-Sapphire (SOS) films were implanted with boron (B)
and phosphorous (P) ions. Different samples, prepared by varying the ion
dose in the range to 5 x and ion energy in the range
150-350 keV, were investigated by the Raman spectroscopy, photoluminescence
(PL) spectroscopy and glancing angle x-ray diffraction (GAXRD). The Raman
results from dose dependent B implanted samples show red-shifted and
asymmetrically broadened Raman line-shape for B dose greater than
ions cm. The asymmetry and red shift in the Raman line-shape is
explained in terms of quantum confinement of phonons in silicon nanostructures
formed as a result of ion implantation. PL spectra shows size dependent visible
luminescence at 1.9 eV at room temperature, which confirms the presence
of silicon nanostructures. Raman studies on P implanted samples were also
done as a function of ion energy. The Raman results show an amorphous top SOS
surface for sample implanted with 150 keV P ions of dose 5 x ions
cm. The nanostructures are formed when the P energy is increased to
350 keV by keeping the ion dose fixed. The GAXRD results show consistency with
the Raman results.Comment: 9 Pages, 6 Figures and 1 Table, \LaTex format To appear in
SILICON(SPRINGER
Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
Orthotopic liver transplantation for alcoholic liver disease
Alcohol abuse is the most common cause of end‐stage liver disease in the United States, but many transplant centers are unwilling to accept alcoholic patients because of their supposed potential for recidivism, poor compliance with the required immunosuppression regimen and resulting failure of the allograft. There is also concern that alcohol‐induced injury in other organs will preclude a good result. From July 1, 11982, to April 30, 1988, 73 patients received orthotopic liver transplants at the University of Pittsburgh for end‐stage alcoholic liver disease. Fifty‐two (71%) of these were alive at 25 ± 9 mo (mean ± S. D.) after transplantation, when a phone survey of these patients, their wives/husbands, and their physicians was performed to evaluate their subsequent use of alcohol, current medical condition and employment. Data obtained were compared with those for nonalcoholic patients selected as transplant controls. The recidivism rate has been 11.5%, with most patients drinking only socially. Fifty‐four percent of the survivors are employed, 21% classify themselves as homemakers and only 11 (21%) are unable to work. Twenty‐one patients died after transplantation; the most frequent cause of death was sepsis (43%), and intraoperative death was the next most common cause (28.6%). These data demonstrate that alcoholic patients can be transplanted successfully and achieve good health not significantly different from that of individuals transplanted for other causes. Thus orthotopic liver transplantation is a therapeutic option that should be considered for individuals with end‐stage alcoholic liver disease who desire such therapy. Copyright © 1990 American Association for the Study of Liver Disease
Proteomics: in pursuit of effective traumatic brain injury therapeutics
Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients
- …
