13 research outputs found
A Finite Element Model of the Human Buttocks for Prediction of Seat Pressure Distributions
Morphological Clines and Weak Drift along an Urbanization Gradient in the Butterfly, Pieris rapae
Urban areas are increasing globally, providing opportunities for biodiversity researchers to study the process in which species become established in novel, highly disturbed habitats. This ecological process can be understood through analyses of morphological and genetic variation, which can shed light on patterns of neutral and adaptive evolution. Previous studies have shown that urban populations often diverge genetically from non-urban source populations. This could occur due to neutral genetic drift, but an alternative is that selection could lead to allele frequency changes in urban populations. The development of genome scan methods provides an opportunity to investigate these outcomes from samples of genetic variation taken along an urbanization gradient. Here we examine morphological variation in wing size and diversity at neutral amplified fragment length polymorphisms in the butterfly Pieris rapae L. (Lepidoptera, Pieridae) sampled from the center to the periphery of Marseille. We utilize established and novel environmental correlation approaches to scan genetic variation for evidence of selection. We find significant morphological differences in urban populations, as well as weak genetic structure and decreased genetic diversity in urban versus non-urban sites. However, environmental correlation tests provide little support for selection in our dataset. Our comparison of different methods and allele frequency clines suggests that loci identified as significant are false positives. Although there is some indication that selection may be acting on wing size in urban butterflies, genetic analyses suggest P. rapae are undergoing neutral drift
Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A
It is essential to improve therapies for controlling excessive bleeding in patients with haemorrhagic disorders. As activated blood platelets mediate the primary response to vascular injury, we hypothesize that storage of coagulation Factor VIII within platelets may provide a locally inducible treatment to maintain haemostasis for haemophilia A. Here we show that haematopoietic stem cell gene therapy can prevent the occurrence of severe bleeding episodes in dogs with haemophilia A for at least 2.5 years after transplantation. We employ a clinically relevant strategy based on a lentiviral vector encoding the ITGA2B gene promoter, which drives platelet-specific expression of human FVIII permitting storage and release of FVIII from activated platelets. One animal receives a hybrid molecule of FVIII fused to the von Willebrand Factor propeptide-D2 domain that traffics FVIII more effectively into α-granules. The absence of inhibitory antibodies to platelet-derived FVIII indicates that this approach may have benefit in patients who reject FVIII replacement therapies. Thus, platelet FVIII may provide effective long-term control of bleeding in patients with haemophilia A
Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition
Abstract Mosquitoes are well known for their epidemiological importance as vectors of a wide range of human pathogens. Despite the many studies on medically important species, little is known about the diversity patterns of these insects in urban green spaces, which serve as shelter and refuge for many native and invasive species. Here, we investigate drivers of mosquito richness and composition in nine urban parks in the city of São Paulo, Brazil. Using the equilibrium theory of island biogeography, we tested predictive models for species richness and composition and performed nestedness analysis. We also investigated whether species loss tends to benefit vector mosquitoes. In the period 2011 to 2013, a total of 37,972 mosquitoes belonging to 73 species and 14 genera were collected. Our results suggest there is a species-area relationship, an increase in species similarity as richness is lost and a nested species composition pattern. Seven of the eight most commonly found species are considered vectors of human pathogens, suggesting a possible link between species loss and increased risk of pathogen transmission. Our data highlight the need for studies that seek to understand how species loss may affect the risk of infectious diseases in urban areas
Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest
International audienceFour single nucleotide polymorphism (SNP)-based human leukocyte antigen (HLA) imputation methods (e-HLA, HIBAG, HLA*IMP:02 and MAGPrediction) were trained using 1000 Genomes SNP and HLA genotypes and assessed for their ability to accurately impute molecular HLA-A, -B, -C and -DRB1 genotypes in the Human Genome Diversity Project cell panel. Imputation concordance was high (>89%) across all methods for both HLA-A and HLA-C, but HLA-B and HLA-DRB1 proved generally difficult to impute. Overall, <27.8% of subjects were correctly imputed for all HLA loci by any method. Concordance across all loci was not enhanced via the application of confidence thresholds; reliance on confidence scores across methods only led to noticeable improvement (+3.2%) for HLA-DRB1. As the HLA complex is highly relevant to the study of human health and disease, a standardized assessment of SNP-based HLA imputation methods is crucial for advancing genomic research. Considerable room remains for the improvement of HLA-B and especially HLA-DRB1 imputation methods, and no imputation method is as accurate as molecular genotyping. The application of large, ancestrally diverse HLA and SNP reference data sets and multiple imputation methods has the potential to make SNP-based HLA imputation methods a tractable option for determining HLA genotypes
