765 research outputs found

    Appointing Women to Boards: Is There a Cultural Bias?

    Get PDF
    Companies that are serious about corporate governance and business ethics are turning their attention to gender diversity at the most senior levels of business (Institute of Business Ethics, Business Ethics Briefing 21:1, 2011). Board gender diversity has been the subject of several studies carried out by international organizations such as Catalyst (Increasing gender diversity on boards: Current index of formal approaches, 2012), the World Economic Forum (Hausmann et al., The global gender gap report, 2010), and the European Board Diversity Analysis (Is it getting easier to find women on European boards? 2010). They all lead to reports confirming the overall relatively low proportion of women on boards and the slow pace at which more women are being appointed. Furthermore, the proportion of women on corporate boards varies much across countries. Based on institutional theory, this study hypothesizes and tests whether this variation can be attributed to differences in cultural settings across countries. Our analysis of the representation of women on boards for 32 countries during 2010 reveals that two cultural characteristics are indeed associated with the observed differences. We use the cultural dimensions proposed by Hofstede (Culture’s consequences: International differences in work-related values, 1980) to measure this construct. Results show that countries which have the greatest tolerance for inequalities in the distribution of power and those that tend to value the role of men generally exhibit lower representations of women on boards

    Control of substrate access to the active site in methane monooxygenase

    Get PDF
    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH–MMOB (hereafter termed H–B) complex. Here we remedy this deficiency by providing a crystal structure of H–B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α[subscript 2]β[subscript 2] interface of α[subscript 2]β[subscript 2]γ[subscript 2] MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.National Institute of General Medical Sciences (U.S.) (Grant GM 32114

    The frontline antibiotic vancomycin induces a zinc starvation response in bacteria by binding to Zn(II).

    Get PDF
    Vancomycin is a front-line antibiotic used for the treatment of nosocomial infections, particularly those caused by methicillin-resistant Staphylococcus aureus. Despite its clinical importance the global effects of vancomycin exposure on bacterial physiology are poorly understood. In a previous transcriptomic analysis we identified a number of Zur regulon genes which were highly but transiently up-regulated by vancomycin in Streptomyces coelicolor. Here, we show that vancomycin also induces similar zinc homeostasis systems in a range of other bacteria and demonstrate that vancomycin binds to Zn(II) in vitro. This implies that vancomycin treatment sequesters zinc from bacterial cells thereby triggering a Zur-dependent zinc starvation response. The Kd value of the binding between vancomycin and Zn(II) was calculated using a novel fluorometric assay, and NMR was used to identify the binding site. These findings highlight a new biologically relevant aspect of the chemical property of vancomycin as a zinc chelator.This work was supported by funding from the Royal Society, UK (516002.K5877/ROG), the Medical Research Council, UK (G0700141). A.Z. was supported from the Said foundation and Cambridge Trust.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep1960

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Day and night surgery: is there any influence in the patient postoperative period of urgent colorectal intervention?

    Get PDF
    Background Medical activity performed outside regular work hours may increase risk for patients and professionals. There is few data with respect to urgent colorectal surgery. The aim of this work was to evaluate the impact of daytime versus nighttime surgery on postoperative period of patients with acute colorectal disease. Methods A retrospective study was conducted in a sample of patients with acute colorectal disease who underwent urgent surgery at the General Surgery Unit of Braga Hospital, between January 2005 and March 2013. Patients were stratified by operative time of day into a daytime group (surgery between 8:00 and 20:59) and the nighttime group (21:00–7:59) and compared for clinical and surgical parameters. A questionnaire was distributed to surgeons, covering aspects related to the practice of urgent colorectal surgery and fatigue. Results A total of 330 patients were included, with 214 (64.8 %) in the daytime group and 116 (35.2 %) in the nighttime group. Colorectal cancer was the most frequent pathology. Waiting time (p?<?0.001) and total length of hospital stay (p?=?0.008) were significantly longer in the daytime group. There were no significant differences with respect to early or late complications. However, 100 % of surgeons reported that they are less proficient during nighttime. Conclusions Among patients with acute colorectal disease subjected to urgent surgery, there was no significant association between nighttime surgery and the presence of postoperative medical and surgical morbidities. Patients who were subjected to daytime surgery had longer length of stay at the hospital

    A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport, chronic lung infections, inflammation and eventual respiratory failure. With the exception of the small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect. The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediated CFTR gene therapy formulation through preclinical and clinical development. OBJECTIVE: To determine clinical efficacy of the formulation delivered to the airways over a period of 1 year in patients with CF. DESIGN: This was a randomised, double-blind, placebo-controlled Phase IIb trial of the CFTR gene–liposome complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1). Allocation was blinded by masking nebuliser chambers. SETTINGS: Data were collected in the clinical and scientific sites and entered onto a trial-specific InForm, version 4.6 database. PARTICIPANTS: Patients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1) between 50% and 90% predicted and any combination of CFTR mutations. The per-protocol group (≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene therapy (78 randomised). INTERVENTIONS: Subjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at 28 (±5)-day intervals over 1 year. MAIN OUTCOME MEASURES: The primary end point was the relative change in percentage predicted FEV1 over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and lower airway potential difference. RESULTS: There was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI) 0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective of sex, age or CFTR mutation class. Subjects with a more severe baseline FEV1 had a FEV1 TE of 6.4% (95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI. The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No difference in treatment-attributable AEs was seen between the placebo and active groups. CONCLUSIONS: Monthly application of the pGM169/GL67A gene therapy formulation was associated with an improvement in lung function, other clinically relevant parameters and bronchial CFTR function, compared with placebo. LIMITATIONS: Although encouraging, the improvement in FEV1 was modest and was not accompanied by detectable improvement in patients’ quality of life. FUTURE WORK: Future work will focus on attempts to increase efficacy by increasing dose or frequency, the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of repeated administration. TRIAL REGISTRATION: ClinicalTrials.gov NCT01621867

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear

    Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping

    Get PDF
    To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore