8 research outputs found
Mapping quantitative trait loci (QTL) in sheep. II. Meta-assembly and identification of novel QTL for milk production traits in sheep
An (Awassi × Merino) × Merino backcross family of 172 ewes was used to map quantitative trait loci (QTL) for different milk production traits on a framework map of 200 loci across all autosomes. From five previously proposed mathematical models describing lactation curves, the Wood model was considered the most appropriate due to its simplicity and its ability to determine ovine lactation curve characteristics. Derived milk traits for milk, fat, protein and lactose yield, as well as percentage composition and somatic cell score were used for single and two-QTL approaches using maximum likelihood estimation and regression analysis. A total of 15 significant (P < 0.01) and additional 25 suggestive (P < 0.05) QTL were detected across both single QTL methods and all traits. In preparation of a meta-analysis, all QTL results were compared with a meta-assembly of QTL for milk production traits in dairy ewes from various public domain sources and can be found on the ReproGen ovine gbrowser http://crcidp.vetsci.usyd.edu.au/cgi-bin/gbrowse/oaries_genome/. Many of the QTL for milk production traits have been reported on chromosomes 1, 3, 6, 16 and 20. Those on chromosomes 3 and 20 are in strong agreement with the results reported here. In addition, novel QTL were found on chromosomes 7, 8, 9, 14, 22 and 24. In a cross-species comparison, we extended the meta-assembly by comparing QTL regions of sheep and cattle, which provided strong evidence for synteny conservation of QTL regions for milk, fat, protein and somatic cell score data between cattle and sheep
What Today's Serious Cyber Attacks on Cars Tell Us
Highly connected with the environment via various interfaces, cars have been the focus of malicious cyber attacks for years. These attacks are becoming an increasing burden for a society with growing vehicle autonomization: they are the sword of Damocles of future mobility. Therefore, research is particularly active in the area of vehicle IT security, and in part also in the area of dependability, in order to develop effective countermeasures and to maintain a minimum of one step ahead of hackers. This paper examines the known state-of-the-art security and dependability measures based on a detailed and systematic analysis of published cyber attacks on automotive software systems. The sobering result of the analysis of the cyber attacks with the model-based technique SAM (Security Abstraction Model) and a categorization of the examined attacks in relation to the known security and dependability measures is that most countermeasures against cyber attacks are hardly effective. They either are not applicable to the underlying problem or take effect too late; the intruder has already gained access to a substantial part of the vehicle when the countermeasures apply. The paper is thus contributing to an understanding of the gaps that exist today in the area of vehicle security and dependability and concludes concrete research challenges
