527 research outputs found
Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms
Artemether, a lipid-soluble derivative of artemisinin has been reported to possess anti-inflammatory properties. In this study, we have investigated the molecular mechanisms involved in the inhibition of neuroinflammation by the drug. The effects of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether (5-40µM) for 24 hours. ELISAs and western blotting were used to detect pro inflammatory cytokines, nitric oxide, PGE2, iNOS, COX-2 and mPGES-1. BACE-1 activity and Aβ levels were measured with ELISA kits. Protein levels of targets in NF-kappaB and p38 MAPK signalling, as well as HO-1, NQO1 and Nrf2 were also measured with western blot. NF-kappaB binding to the DNA was investigated using EMSA. MTT, DNA fragmentation and ROS assays in BV2-HT22 neuronal co-culture were used to evaluate the effects of artemether on neuroinflammation-induced neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly suppressed pro-inflammatory mediators (NO/iNOS, PGE2/COX-2/mPGES-1, TNFα, and IL-6), Aβ and BACE-1 in BV2 cells following LPS stimulation. These effects of artemether were shown to be mediated through inhibition of NF-kappaB and p38MAPK signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 microglia. The drug activated Nrf2 activity by increasing nuclear translocation of Nrf2 and its binding to antioxidant response elements in BV2 cells. Transfection of BV2 microglia with Nrf2 siRNA resulted in the loss of both anti-inflammatory and neuroprotective activities of artemether. We conclude that artemether induces Nrf2 expression and suggest that Nrf2 mediates the anti-inflammatory effect of artemether in BV2 microglia. Our results suggest that this drug has a therapeutic potential in neurodegenerative disorders
Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand
Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks
NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells
Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases
Diagnostic accuracy of existing methods for identifying diabetic foot ulcers from inpatient and outpatient datasets
<p>Abstract</p> <p>Background</p> <p>As the number of persons with diabetes is projected to double in the next 25 years in the US, an accurate method of identifying diabetic foot ulcers in population-based data sources are ever more important for disease surveillance and public health purposes. The objectives of this study are to evaluate the accuracy of existing methods and to propose a new method.</p> <p>Methods</p> <p>Four existing methods were used to identify all patients diagnosed with a foot ulcer in a Department of Veterans Affairs (VA) hospital from the inpatient and outpatient datasets for 2003. Their electronic medical records were reviewed to verify whether the medical records positively indicate presence of a diabetic foot ulcer in diagnoses, medical assessments, or consults. For each method, five measures of accuracy and agreement were evaluated using data from medical records as the gold standard.</p> <p>Results</p> <p>Our medical record reviews show that all methods had sensitivity > 92% but their specificity varied substantially between 74% and 91%. A method used in Harrington et al. (2004) was the most accurate with 94% sensitivity and 91% specificity and produced an annual prevalence of 3.3% among VA users with diabetes nationwide. A new and simpler method consisting of two codes (707.1× and 707.9) shows an equally good accuracy with 93% sensitivity and 91% specificity and 3.1% prevalence.</p> <p>Conclusions</p> <p>Our results indicate that the Harrington and New methods are highly comparable and accurate. We recommend the Harrington method for its accuracy and the New method for its simplicity and comparable accuracy.</p
Household food insecurity, diet, and weight status in a disadvantaged district of Ho Chi Minh City, Vietnam: a cross-sectional study
Understanding human functioning using graphical models
<p>Abstract</p> <p>Background</p> <p>Functioning and disability are universal human experiences. However, our current understanding of functioning from a comprehensive perspective is limited. The development of the International Classification of Functioning, Disability and Health (ICF) on the one hand and recent developments in graphical modeling on the other hand might be combined and open the door to a more comprehensive understanding of human functioning. The objective of our paper therefore is to explore how graphical models can be used in the study of ICF data for a range of applications.</p> <p>Methods</p> <p>We show the applicability of graphical models on ICF data for different tasks: Visualization of the dependence structure of the data set, dimension reduction and comparison of subpopulations. Moreover, we further developed and applied recent findings in causal inference using graphical models to estimate bounds on intervention effects in an observational study with many variables and without knowing the underlying causal structure.</p> <p>Results</p> <p>In each field, graphical models could be applied giving results of high face-validity. In particular, graphical models could be used for visualization of functioning in patients with spinal cord injury. The resulting graph consisted of several connected components which can be used for dimension reduction. Moreover, we found that the differences in the dependence structures between subpopulations were relevant and could be systematically analyzed using graphical models. Finally, when estimating bounds on causal effects of ICF categories on general health perceptions among patients with chronic health conditions, we found that the five ICF categories that showed the strongest effect were plausible.</p> <p>Conclusions</p> <p>Graphical Models are a flexible tool and lend themselves for a wide range of applications. In particular, studies involving ICF data seem to be suited for analysis using graphical models.</p
Predictive coding and representationalism
According to the predictive coding theory of cognition (PCT), brains are
predictive machines that use perception and action to minimize prediction error, i.e. the discrepancy between bottom–up, externally-generated sensory signals and top–down, internally-generated sensory predictions. Many consider PCT to have an explanatory scope that is unparalleled in contemporary cognitive science and see in it a framework that could potentially provide us with a unified account of cognition. It
is also commonly assumed that PCT is a representational theory of sorts, in the sense that it postulates that our cognitive contact with the world is mediated by internal representations. However, the exact sense in which PCT is representational remains unclear; neither is it clear that it deserves such status—that is, whether it really invokes structures that are truly and nontrivially representational in nature. In the present article, I argue that the representational pretensions of PCT are completely justified. This is because the theory postulates cognitive structures—namely action-guiding, detachable, structural models that afford representational error detection—that play genuinely representational functions within the cognitive system
Family history of later-onset breast cancer, breast healthy behavior and invasive breast cancer among postmenopausal women: a cohort study
- …
