2,171 research outputs found
The Lippmann–Schwinger Formula and One Dimensional Models with Dirac Delta Interactions
We show how a proper use of the Lippmann–Schwinger equation simplifies the calculations to obtain scattering states for one dimensional systems perturbed by N Dirac delta equations. Here, we consider two situations. In the former, attractive Dirac deltas perturbed the free one dimensional Schrödinger Hamiltonian. We obtain explicit expressions for scattering and Gamow states. For completeness, we show that the method to obtain bound states use comparable formulas, although not based on the Lippmann–Schwinger equation. Then, the attractive N deltas perturbed the one dimensional Salpeter equation. We also obtain explicit expressions for the scattering wave functions. Here, we need regularisation techniques that we implement via heat kernel regularisation
Identification and characterization of a novel non-structural protein of bluetongue virus
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell
Stabilizing entanglement autonomously between two superconducting qubits
Quantum error-correction codes would protect an arbitrary state of a
multi-qubit register against decoherence-induced errors, but their
implementation is an outstanding challenge for the development of large-scale
quantum computers. A first step is to stabilize a non-equilibrium state of a
simple quantum system such as a qubit or a cavity mode in the presence of
decoherence. Several groups have recently accomplished this goal using
measurement-based feedback schemes. A next step is to prepare and stabilize a
state of a composite system. Here we demonstrate the stabilization of an
entangled Bell state of a quantum register of two superconducting qubits for an
arbitrary time. Our result is achieved by an autonomous feedback scheme which
combines continuous drives along with a specifically engineered coupling
between the two-qubit register and a dissipative reservoir. Similar autonomous
feedback techniques have recently been used for qubit reset and the
stabilization of a single qubit state, as well as for creating and stabilizing
states of multipartite quantum systems. Unlike conventional, measurement-based
schemes, an autonomous approach counter-intuitively uses engineered dissipation
to fight decoherence, obviating the need for a complicated external feedback
loop to correct errors, simplifying implementation. Instead the feedback loop
is built into the Hamiltonian such that the steady state of the system in the
presence of drives and dissipation is a Bell state, an essential building-block
state for quantum information processing. Such autonomous schemes, broadly
applicable to a variety of physical systems as demonstrated by a concurrent
publication with trapped ion qubits, will be an essential tool for the
implementation of quantum-error correction.Comment: 39 pages, 7 figure
Asteroseismology
Asteroseismology is the determination of the interior structures of stars by
using their oscillations as seismic waves. Simple explanations of the
astrophysical background and some basic theoretical considerations needed in
this rapidly evolving field are followed by introductions to the most important
concepts and methods on the basis of example. Previous and potential
applications of asteroseismology are reviewed and future trends are attempted
to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar
Systems", eds. T. D. Oswalt et al., Springer Verla
Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors
Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either 177Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) (177Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the 177Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the 177Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the 177Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the 177Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame. Conclusions Treatment with 177Lu-Dotatate resulted in markedly longer progression-free survival and a significantly higher response rate than high-dose octreotide LAR among patients with advanced midgut neuroendocrine tumors. Preliminary evidence of an overall survival benefit was seen in an interim analysis; confirmation will be required in the planned final analysis. Clinically significant myelosuppression occurred in less than 10% of patients in the 177Lu-Dotatate group. (Funded by Advanced Accelerator Applications; NETTER-1 ClinicalTrials.gov number, NCT01578239 ; EudraCT number 2011-005049-11
Entropic Uncertainty Relations in Quantum Physics
Uncertainty relations have become the trademark of quantum theory since they
were formulated by Bohr and Heisenberg. This review covers various
generalizations and extensions of the uncertainty relations in quantum theory
that involve the R\'enyi and the Shannon entropies. The advantages of these
entropic uncertainty relations are pointed out and their more direct connection
to the observed phenomena is emphasized. Several remaining open problems are
mentionedComment: 35 pages, review pape
Evolutionary and pulsational properties of white dwarf stars
Abridged. White dwarf stars are the final evolutionary stage of the vast
majority of stars, including our Sun. The study of white dwarfs has potential
applications to different fields of astrophysics. In particular, they can be
used as independent reliable cosmic clocks, and can also provide valuable
information about the fundamental parameters of a wide variety of stellar
populations, like our Galaxy and open and globular clusters. In addition, the
high densities and temperatures characterizing white dwarfs allow to use these
stars as cosmic laboratories for studying physical processes under extreme
conditions that cannot be achieved in terrestrial laboratories. They can be
used to constrain fundamental properties of elementary particles such as axions
and neutrinos, and to study problems related to the variation of fundamental
constants.
In this work, we review the essentials of the physics of white dwarf stars.
Special emphasis is placed on the physical processes that lead to the formation
of white dwarfs as well as on the different energy sources and processes
responsible for chemical abundance changes that occur along their evolution.
Moreover, in the course of their lives, white dwarfs cross different
pulsational instability strips. The existence of these instability strips
provides astronomers with an unique opportunity to peer into their internal
structure that would otherwise remain hidden from observers. We will show that
this allows to measure with unprecedented precision the stellar masses and to
infer their envelope thicknesses, to probe the core chemical stratification,
and to detect rotation rates and magnetic fields. Consequently, in this work,
we also review the pulsational properties of white dwarfs and the most recent
applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and
Astrophysics Revie
A systematic review of the evidence for single stage and two stage revision of infected knee replacement
BACKGROUND:
Periprosthetic infection about the knee is a devastating complication that may affect between 1% and 5% of knee replacement. With over 79 000 knee replacements being implanted each year in the UK, periprosthetic infection (PJI) is set to become an important burden of disease and cost to the healthcare economy. One of the important controversies in treatment of PJI is whether a single stage revision operation is superior to a two-stage procedure. This study sought to systematically evaluate the published evidence to determine which technique had lowest reinfection rates.
METHODS:
A systematic review of the literature was undertaken using the MEDLINE and EMBASE databases with the aim to identify existing studies that present the outcomes of each surgical technique. Reinfection rate was the primary outcome measure. Studies of specific subsets of patients such as resistant organisms were excluded.
RESULTS:
63 studies were identified that met the inclusion criteria. The majority of which (58) were reports of two-stage revision. Reinfection rated varied between 0% and 41% in two-stage studies, and 0% and 11% in single stage studies. No clinical trials were identified and the majority of studies were observational studies.
CONCLUSIONS:
Evidence for both one-stage and two-stage revision is largely of low quality. The evidence basis for two-stage revision is significantly larger, and further work into direct comparison between the two techniques should be undertaken as a priority
Effect of diabetes on caregiver burden in an observational study of individuals with Alzheimer’s disease
Background
The burden on caregivers of patients with Alzheimer’s disease (AD) is associated with the patient’s functional status and may also be influenced by chronic comorbid medical conditions, such as diabetes. This post-hoc exploratory analysis assessed whether comorbid diabetes in patients with AD affects caregiver burden, and whether caregivers with diabetes experience greater burden than caregivers without diabetes. Caregiver and patient healthcare resource use (HCRU) were also assessed.
Methods
Baseline data from the GERAS observational study of patients with AD and their caregivers (both n = 1495) in France, Germany and the UK were analyzed.
Caregiver burden was assessed using the Zarit Burden Interview (ZBI). Caregiver time on activities of daily living (ADL: basic ADL; instrumental ADL, iADL) and supervision (hours/month), and caregiver and patient HCRU (outpatient visits, emergency room visits, nights hospitalized) were assessed using the Resource Utilization in Dementia instrument for the month before the baseline visit. Regression analyses were adjusted for relevant covariates. Time on supervision and basic ADL was analyzed using zero-inflated negative binomial regression.
Results
Caregivers of patients with diabetes (n = 188) were younger and more likely to be female (both p < 0.05), compared with caregivers of patients without diabetes (n = 1307). Analyses showed caregivers of patients with diabetes spent significantly more time on iADL (+16 %; p = 0.03; increases were also observed for basic ADL and total caregiver time but did not reach statistical significance) and had a trend towards increased ZBI score. Patients with diabetes had a 63 % increase in the odds of requiring supervision versus those without diabetes (p = 0.01). Caregiver and patient HCRU did not differ according to patient diabetes.
Caregivers with diabetes (n = 127) did not differ from those without diabetes (n = 1367) regarding burden/time, but caregivers with diabetes had a 91 % increase in the odds of having outpatient visits (p = 0.01).
Conclusions
This cross-sectional analysis found caregiver time on iADL and supervision was higher for caregivers of patients with AD and diabetes versus without diabetes, while HCRU was unaffected by patient diabetes. Longitudinal analyses assessing change in caregiver burden over time by patient diabetes status may help clarify the cumulative impact of diabetes and AD dementia on caregiver burden
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
- …
