9,344 research outputs found
Transoral laser surgery for laryngeal carcinoma: has Steiner achieved a genuine paradigm shift in oncological surgery?
Transoral laser microsurgery applies to the piecemeal removal of malignant tumours of the upper aerodigestive tract using the CO2 laser under the operating microscope. This method of surgery is being increasingly popularised as a single modality treatment of choice in early laryngeal cancers (T1 and T2) and occasionally in the more advanced forms of the disease (T3 and T4), predomi- nantly within the supraglottis.
Thomas Kuhn, the American physicist turned philosopher and historian of science, coined the phrase ‘paradigm shift’ in his groundbreaking book The Structure of Scientific Revolutions. He argued that the arrival of the new and often incompatible idea forms the core of a new paradigm, the birth of an entirely new way of thinking. This article discusses whether Steiner and col- leagues truly brought about a paradigm shift in oncological surgery.
By rejecting the principle of en block resection and by replacing it with the belief that not only is it oncologically safe to cut through the substance of the tumour but in doing so one can actually achieve better results, Steiner was able to truly revolutionise the man- agement of laryngeal cancer. Even though within this article the repercussions of his insight are limited to the upper aerodigestive tract oncological surgery, his willingness to question other peoples’ dogma makes his contribution truly a genuine paradigm shift
Population-specific material properties of the implantation site for transcatheter aortic valve replacement finite element simulations
Patient-specific computational models are an established tool to support device development and test under clinically relevant boundary conditions. Potentially, such models could be used to aid the clinical decision-making process for percutaneous valve selection; however, their adoption in clinical practice is still limited to individual cases. To be fully informative, they should include patient-specific data on both anatomy and mechanics of the implantation site. In this work, fourteen patient-specific computational models for transcatheter aortic valve replacement (TAVR) with balloon-expandable Sapien XT devices were retrospectively developed to tune the material parameters of the implantation site mechanical model for the average TAVR population. Pre-procedural computed tomography (CT) images were post-processed to create the 3D patient-specific anatomy of the implantation site. Balloon valvuloplasty and device deployment were simulated with finite element (FE) analysis. Valve leaflets and aortic root were modelled as linear elastic materials, while calcification as elastoplastic. Material properties were initially selected from literature; then, a statistical analysis was designed to investigate the effect of each implantation site material parameter on the implanted stent diameter and thus identify the combination of material parameters for TAVR patients. These numerical models were validated against clinical data. The comparison between stent diameters measured from post-procedural fluoroscopy images and final computational results showed a mean difference of 2.5 ± 3.9%. Moreover, the numerical model detected the presence of paravalvular leakage (PVL) in 79% of cases, as assessed by post-TAVR echocardiographic examination. The final aim was to increase accuracy and reliability of such computational tools for prospective clinical applications
In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor
Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor
Identification of 2-Aminothiazole-4-Carboxylate Derivatives Active against Mycobacterium tuberculosis H37Rv and the β-Ketoacyl-ACP Synthase mtFabH
Background
Tuberculosis (TB) is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration.
Methodology/Principal Findings
Our approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM) to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H37Rv and, dissociatively, against the β-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H37Rv with an MIC of 0.06 µg/ml (240 nM), but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido)-5-(3-chlorophenyl)thiazole-4-carboxylateinhibited mtFabH with an IC50 of 0.95±0.05 µg/ml (2.43±0.13 µM) but was not active against the whole cell organism.
Conclusions/Significance
These findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents
Questioning Classic Patient Classification Techniques in Gait Rehabilitation: Insights from Wearable Haptic Technology
Classifying stroke survivors based on their walking abilities is an important part of the gait rehabilitation process. It can act as powerful indicator of function and prognosis in both the early days after a stroke and long after a survivor receives rehabilitation. This classification often relies solely on walking speed; a quick and easy measure, with only a stopwatch needed. However, walking speed may not be the most accurate way of judging individual’s walking ability. Advances in technology mean we are now in a position where ubiquitous and wearable technologies can be used to elicit much richer measures to characterise gait. In this paper we present a case study from one of our studies, where within a homogenous group of stroke survivors (based on walking speed classification) important differences in individual results and the way they responded to rhythmic haptic cueing were identified during the piloting of a novel gait rehabilitation technique
Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism.
Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data
Composite-pulse magnetometry with a solid-state quantum sensor
The sensitivity of quantum magnetometers is challenged by control errors and,
especially in the solid-state, by their short coherence times. Refocusing
techniques can overcome these limitations and improve the sensitivity to
periodic fields, but they come at the cost of reduced bandwidth and cannot be
applied to sense static (DC) or aperiodic fields. Here we experimentally
demonstrate that continuous driving of the sensor spin by a composite pulse
known as rotary-echo (RE) yields a flexible magnetometry scheme, mitigating
both driving power imperfections and decoherence. A suitable choice of RE
parameters compensates for different scenarios of noise strength and origin.
The method can be applied to nanoscale sensing in variable environments or to
realize noise spectroscopy. In a room-temperature implementation based on a
single electronic spin in diamond, composite-pulse magnetometry provides a
tunable trade-off between sensitivities in the microT/sqrt(Hz) range,
comparable to those obtained with Ramsey spectroscopy, and coherence times
approaching T1
Analytic Kramer kernels, Lagrange-type interpolation series and de Branges spaces
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established
Synthetic Lethality of Chk1 Inhibition Combined with p53 and/or p21 Loss During a DNA Damage Response in Normal and Tumor Cells
Cell cycle checkpoints ensure genome integrity and are frequently compromised in human cancers. A therapeutic strategy being explored takes advantage of checkpoint defects in p53-deficient tumors in order to sensitize them to DNA-damaging agents by eliminating Chk1-mediated checkpoint responses. Using mouse models, we demonstrated that p21 is a key determinant of how cells respond to the combination of DNA damage and Chk1 inhibition (combination therapy) in normal cells as well as in tumors. Loss of p21 sensitized normal cells to the combination therapy much more than did p53 loss and the enhanced lethality was partially blocked by CDK inhibition. In addition, basal pools of p21 (p53 independent) provided p53 null cells with protection from the combination therapy. Our results uncover a novel p53-independent function for p21 in protecting cells from the lethal effects of DNA damage followed by Chk1 inhibition. As p21 levels are low in a significant fraction of colorectal tumors, they are predicted to be particularly sensitive to the combination therapy. Results reported in this study support this prediction
Sensing electric fields using single diamond spins
The ability to sensitively detect charges under ambient conditions would be a
fascinating new tool benefitting a wide range of researchers across
disciplines. However, most current techniques are limited to low-temperature
methods like single-electron transistors (SET), single-electron electrostatic
force microscopy and scanning tunnelling microscopy. Here we open up a new
quantum metrology technique demonstrating precision electric field measurement
using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC
electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This
corresponds to the electric field produced by a single elementary charge
located at a distance of ~ 150 nm from our spin sensor with averaging for one
second. By careful analysis of the electronic structure of the defect centre,
we show how an applied magnetic field influences the electric field sensing
properties. By this we demonstrate that diamond defect centre spins can be
switched between electric and magnetic field sensing modes and identify
suitable parameter ranges for both detector schemes. By combining magnetic and
electric field sensitivity, nanoscale detection and ambient operation our study
opens up new frontiers in imaging and sensing applications ranging from
material science to bioimaging
- …
