12 research outputs found

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Early peri-operative hyperglycaemia and renal allograft rejection in patients without diabetes

    Get PDF
    BACKGROUND: Patients with diabetes have an increased risk for allograft rejection, possibly related to peri-operative hyperglycaemia. Hyperglycaemia is also common following transplantation in patients without diabetes. We hypothesise that exposure of allograft tissue to hyperglycaemia could influence the risk for rejection in any patient with high sugars. To investigate the relationship of peri-operative glucose control to acute rejection in renal transplant patients without diabetes, all patients receiving their first cadaveric graft in a single center were surveyed and patients without diabetes receiving cyclosporin-based immunosuppression were reviewed (n = 230). Records of the plasma blood glucose concentration following surgery and transplant variables pertaining to allograft rejection were obtained. All variables suggestive of association were entered into multivariate logistic regression analysis, their significance analysed and modeled. RESULTS: Hyperglycaemia (>8.0 mmol/L) occurs in over 73% of non-diabetic patients following surgery. Glycaemic control immediately following renal transplantation independently predicted acute rejection (Odds ratio=1.08). 42% of patients with a glucose < 8.0 mmol/L following surgery developed rejection compared to 71% of patients who had a serum glucose above this level. Hyperglycaemia was not associated with any delay of graft function. CONCLUSION: Hyperglycaemia is associated with an increased risk for allograft rejection. This is consistent with similar findings in patients with diabetes. We hypothesise a causal link concordant with epidemiological and in vitro evidence and propose further clinical research

    The importance of context: an exploration of factors influencing the adoption of student-centered teaching among chemistry, biology, and physics faculty

    Get PDF
    Background: Research at the secondary and postsecondary levels has clearly demonstrated the critical role that individual and contextual characteristics play in instructors’ decision to adopt educational innovations. Although recent research has shed light on factors influencing the teaching practices of science, technology, engineering, and mathematics (STEM) faculty, it is still not well understood how unique departmental environments impact faculty adoption of evidence-based instructional practices (EBIPs) within the context of a single institution. In this study, we sought to characterize the communication channels utilized by STEM faculty, as well as the contextual and individual factors that influence the teaching practices of STEM faculty at the departmental level. Accordingly, we collected survey and observational data from the chemistry, biology, and physics faculty at a single large research-intensive university in the USA. We then compared the influencing factors experienced by faculty in these different departments to their instructional practices. Results: Analyses of the survey data reveal disciplinary differences in the factors influencing adoption of EBIPs. In particular, the physics faculty (n = 15) had primarily student-centered views about teaching and experienced the most positive contextual factors toward adoption of EBIPs. At the other end of the spectrum, the chemistry faculty (n = 20) had primarily teacher-centered views and experienced contextual factors that hindered the adoption of student-centered practices. Biology faculty (n = 25) fell between these two groups. Classroom observational data reflected these differences: The physics classrooms were significantly more student-centered than the chemistry classrooms. Conclusions: This study demonstrates that disciplinary differences exist in the contextual factors teaching conceptions that STEM faculty experience and hold, even among faculty within the same institution. Moreover, it shows that these differences are associated to the level of adoption of student-centered teaching practices. This work has thus identified the critical need to carefully characterize STEM faculty’s departmental environment and conceptions about teaching before engaging in instructional reform efforts, and to adapt reform activities to account for these factors. The results of this study also caution the over generalization of findings from a study focused on one type of STEM faculty in one environment to all STEM faculty in any environment

    Dietary calcium and cell membrane abnormality in genetic hypertension.

    No full text

    Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Get PDF
    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO(2)-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO(2)/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO(2) films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption
    corecore