12,930 research outputs found
Design and analysis on reduced switching frequency current mode control isolated power converters for light load efficiency
This paper focus on improving light load efficiency of isolated DC/DC converters. A mixed signal control platform is proposed to implement multiple-mode variable frequency control. An 8-bit Micro Controller Unit MCU is used in the platform to provide adaptive control schemes and cost effectiveness digital solutions. Small signal analysis is covered to explain frequency modulation effects. Control of isolation transformer flux swing to avoid saturation is also implemented, to provide safe operation both in steady and transient states. A 300 Watt prototype Two-FET forward converter is built up to verify the proposed mixed signal control platform. © 2009 IEEE.published_or_final_versionThe Inaugural IEEE Energy Conversion Congress and Exposition (ECCE 2009), San Jose, CA., 20-24 September 2009. In Proceedings of the IEEE Energy Conversion Congress and Exposition, 2009, p. 3268-327
Analyzing Digital Image by Deep Learning for Melanoma Diagnosis
Image classi cation is an important task in many medical
applications, in order to achieve an adequate diagnostic of di erent le-
sions. Melanoma is a frequent kind of skin cancer, which most of them
can be detected by visual exploration. Heterogeneity and database size
are the most important di culties to overcome in order to obtain a good
classi cation performance. In this work, a deep learning based method
for accurate classi cation of wound regions is proposed. Raw images are
fed into a Convolutional Neural Network (CNN) producing a probability
of being a melanoma or a non-melanoma. Alexnet and GoogLeNet were
used due to their well-known e ectiveness. Moreover, data augmentation
was used to increase the number of input images. Experiments show that
the compared models can achieve high performance in terms of mean ac-
curacy with very few data and without any preprocessing.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Remote data integrity checking (RDIC) enables a
data storage server, such as a cloud server, to prove to a
verifier that it is actually storing a data owner’s data honestly.
To date, a number of RDIC protocols have been proposed in
the literature, but almost all the constructions suffer from the
issue of a complex key management, that is, they rely on the
expensive public key infrastructure (PKI), which might hinder
the deployment of RDIC in practice. In this paper, we propose
a new construction of identity-based (ID-based) RDIC protocol
by making use of key-homomorphic cryptographic primitive
to reduce the system complexity and the cost for establishing
and managing the public key authentication framework in PKI
based RDIC schemes. We formalize ID-based RDIC and its
security model including security against a malicious cloud server
and zero knowledge privacy against a third party verifier. We
then provide a concrete construction of ID-based RDIC scheme
which leaks no information of the stored files to the verifier
during the RDIC process. The new construction is proven secure
against the malicious server in the generic group model and
achieves zero knowledge privacy against a verifier. Extensive
security analysis and implementation results demonstrate that
the proposed new protocol is provably secure and practical in
the real-world applications.This work is supported by
the National Natural Science Foundation of China
(61501333,61300213,61272436,61472083), Fok Ying Tung
Education Foundation (141065), Program for New Century
Excellent Talents in Fujian University (JA1406
Sound-Induced Flash Illusion is Resistant to Feedback Training
A single flash accompanied by two auditory beeps tends to be perceived as two flashes (Shams et al. Nature 408:788, 2000, Cogn Brain Res 14:147–152, 2002). This phenomenon is known as ‘sound-induced flash illusion.’ Previous neuroimaging studies have shown that this illusion is correlated with modulation of activity in early visual cortical areas (Arden et al. Vision Res 43(23):2469–2478, 2003; Bhattacharya et al. NeuroReport 13:1727–1730, 2002; Shams et al. NeuroReport 12(17):3849–3852, 2001, Neurosci Lett 378(2):76–81, 2005; Watkins et al. Neuroimage 31:1247–1256, 2006, Neuroimage 37:572–578, 2007; Mishra et al. J Neurosci 27(15):4120–4131, 2007). We examined how robust the illusion is by testing whether the frequency of the illusion can be reduced by providing feedback. We found that the sound-induced flash illusion was resistant to feedback training, except when the amount of monetary reward was made dependent on accuracy in performance. However, even in the latter case the participants reported that they still perceived illusory two flashes even though they correctly reported single flash. Moreover, the feedback training effect seemed to disappear once the participants were no longer provided with feedback suggesting a short-lived refinement of discrimination between illusory and physical double flashes rather than vanishing of the illusory percept. These findings indicate that the effect of sound on the perceptual representation of visual stimuli is strong and robust to feedback training, and provide further evidence against decision factors accounting for the sound-induced flash illusion
Evidence for a Type-II band alignment between cubic and hexagonal phases of GaN
The study of photoluminescence spectra of a series of thin, undoped, hexagonal GaN films containing cubic GaN inclusions grown by molecular-beam epitaxy on 6H-SiC was presented. It was shown that an emission peak at ∼3.17 eV in thin, hexagonal GaN films exhibits behaviors typical of a spatially indirect transition. The values of the band offsets extracted from the data were in good agreement with theoretical predictions.published_or_final_versio
Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers
2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe
The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura
Abstract
We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis
Assessing risk of breast cancer in an ethnically South-East Asia population (results of a multiple ethnic groups study)
10.1186/1471-2407-12-529BMC Cancer12-BCMA
Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions
Increased reflectance from the inclusion of highly scattering particles at
low volume fractions in an insulating dielectric offers a promising way to
reduce radiative thermal losses at high temperatures. Here, we investigate
plasmonic resonance driven enhanced scattering from microinclusions of
low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating
composite to tailor its infrared reflectance for minimizing thermal losses from
radiative transfer. To this end, we compute the spectral properties of the
microcomposites using Monte Carlo modeling and compare them with results from
Fresnel equations. The role of particle size-dependent Mie scattering and
absorption efficiencies, and, scattering anisotropy are studied to identify the
optimal microinclusion size and material parameters for maximizing the
reflectance of the thermal radiation. For composites with Si and Ge
microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident
blackbody radiation from sources at temperatures in the range 400 - 1600
{\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from
the plasmonic resonances due to charge carriers generated from defect states
within the semiconductor bandgap. Our results thus open up the possibility of
developing efficient high-temperature thermal insulators through use of the
low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8
Figures
Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts
The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al
- …
