3,602 research outputs found
Testing and comparing two self-care-related instruments among older Chinese adults
Objectives The study aimed to test and compare the reliability and validity, including sensitivity and specificity of the two self-care-related instruments, the Self-care Ability Scale for the Elderly (SASE), and the Appraisal of Self-care Agency Scale-Revised (ASAS-R), among older adults in the Chinese context. Methods A cross-sectional design was used to conduct this study. The sample consisted of 1152 older adults. Data were collected by a questionnaire including the Chinese version of SASE (SASE-CHI), the Chinese version of ASAS-R (ASAS-R-CHI) and the Exercise of Self-Care Agency scale (ESCA). Homogeneity and stability, content, construct and concurrent validity, and sensitivity and specificity were assessed. Results The Cronbach's alpha (α) of SASE-CHI was 0.89, the item-to-total correlations ranged from r = 0.15 to r = 0.81, and the test-retest correlation coefficient (intra-class correlation coefficient, ICC) was 0.99 (95% CI, 0.99±1.00; P<0.001). The Cronbach's α of ASAS-R-CHI was 0.78, the item-to-total correlations ranged from r = 0.20 to r = 0.65, and the test-retest ICC was 0.95 (95% CI, 0.92±0.96; P<0.001). The content validity index (CVI) of SASE-CHI and ASAS-R-CHI was 0.96 and 0.97, respectively. The findings of exploratory and confirmatory factor analyses (EFA and CFA) confirmed a good construct validity of SASE-CHI and ASAS-R-CHI. The Pearson's rank correlation coefficients, as a measure of concurrent validity, between total score of SASE-CHI and ESCA and ASAS-R-CHI and ESCA were assessed to 0.65 (P<0.001) and 0.62 (P<0.001), respectively. Regarding ESCA as the criterion, the area under the receiver operator characteristic (ROC) curve for the cut-point of SASE-CHI and ASAS-R-CHI were 0.93 (95% CI, 0.91±0.94) and 0.83 (95% CI, 0.80±0.86), respectively. Conclusion There is no significant difference between the two instruments. Each has its own characteristics, but SASE-CHI is more suitable for older adults. The key point is that the users can choose the most appropriate scale according to the specific situation.publishedVersionNivå
In situ epitaxial MgB2 thin films for superconducting electronics
A thin film technology compatible with multilayer device fabrication is
critical for exploring the potential of the 39-K superconductor magnesium
diboride for superconducting electronics. Using a Hybrid Physical-Chemical
Vapor Deposition (HPCVD) process, it is shown that the high Mg vapor pressure
necessary to keep the MgB phase thermodynamically stable can be achieved
for the {\it in situ} growth of MgB thin films. The films grow epitaxially
on (0001) sapphire and (0001) 4H-SiC substrates and show a bulk-like of
39 K, a (4.2K) of A/cm in zero field, and a
of 29.2 T in parallel magnetic field. The surface is smooth with a
root-mean-square roughness of 2.5 nm for MgB films on SiC. This deposition
method opens tremendous opportunities for superconducting electronics using
MgB
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions
Increased reflectance from the inclusion of highly scattering particles at
low volume fractions in an insulating dielectric offers a promising way to
reduce radiative thermal losses at high temperatures. Here, we investigate
plasmonic resonance driven enhanced scattering from microinclusions of
low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating
composite to tailor its infrared reflectance for minimizing thermal losses from
radiative transfer. To this end, we compute the spectral properties of the
microcomposites using Monte Carlo modeling and compare them with results from
Fresnel equations. The role of particle size-dependent Mie scattering and
absorption efficiencies, and, scattering anisotropy are studied to identify the
optimal microinclusion size and material parameters for maximizing the
reflectance of the thermal radiation. For composites with Si and Ge
microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident
blackbody radiation from sources at temperatures in the range 400 - 1600
{\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from
the plasmonic resonances due to charge carriers generated from defect states
within the semiconductor bandgap. Our results thus open up the possibility of
developing efficient high-temperature thermal insulators through use of the
low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8
Figures
Bio-nanotechnology application in wastewater treatment
The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed
Quantum Convolutional Neural Networks
We introduce and analyze a novel quantum machine learning model motivated by
convolutional neural networks. Our quantum convolutional neural network (QCNN)
makes use of only variational parameters for input sizes of
qubits, allowing for its efficient training and implementation on realistic,
near-term quantum devices. The QCNN architecture combines the multi-scale
entanglement renormalization ansatz and quantum error correction. We explicitly
illustrate its potential with two examples. First, QCNN is used to accurately
recognize quantum states associated with 1D symmetry-protected topological
phases. We numerically demonstrate that a QCNN trained on a small set of
exactly solvable points can reproduce the phase diagram over the entire
parameter regime and also provide an exact, analytical QCNN solution. As a
second application, we utilize QCNNs to devise a quantum error correction
scheme optimized for a given error model. We provide a generic framework to
simultaneously optimize both encoding and decoding procedures and find that the
resultant scheme significantly outperforms known quantum codes of comparable
complexity. Finally, potential experimental realization and generalizations of
QCNNs are discussed.Comment: 12 pages, 11 figures. v2: New application to optimizing quantum error
correction codes, added sample complexity analysis, more details for
experimental realizations, and other minor revision
Direct observation of spin-polarised bulk bands in an inversion-symmetric semiconductor
Methods to generate spin-polarised electronic states in non-magnetic solids
are strongly desired to enable all-electrical manipulation of electron spins
for new quantum devices. This is generally accepted to require breaking global
structural inversion symmetry. In contrast, here we present direct evidence
from spin- and angle-resolved photoemission spectroscopy for a strong spin
polarisation of bulk states in the centrosymmetric transition-metal
dichalcogenide WSe. We show how this arises due to a lack of inversion
symmetry in constituent structural units of the bulk crystal where the
electronic states are localised, leading to enormous spin splittings up to
eV, with a spin texture that is strongly modulated in both real and
momentum space. As well as providing the first experimental evidence for a
recently-predicted `hidden' spin polarisation in inversion-symmetric materials,
our study sheds new light on a putative spin-valley coupling in
transition-metal dichalcogenides, of key importance for using these compounds
in proposed valleytronic devices.Comment: 6 pages, 4 figure
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Investigating the effects of online communication apprehension and digital technology anxiety on organizational dissent in virtual teams
(c) The Author/sCAUL read and publish agreement 2023fals
High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 degrees C
Fabricating inorganic-organic hybrid perovskite solar cells (PSCs) on plastic substrates broadens their scope for implementation in real systems by imparting portability, conformability and allowing high-throughput production, which is necessary for lowering costs. Here we report a new route to prepare highly dispersed Zn2SnO4 (ZSO) nanoparticles at low-temperature (<100 degrees C) for the development of high-performance flexible PSCs. The introduction of the ZSO film significantly improves transmittance of flexible polyethylene naphthalate/indium-doped tin oxide (PEN/ITO)-coated substrate from similar to 75 to similar to 90% over the entire range of wavelengths. The best performing flexible PSC, based on the ZSO and CH3NH3PbI3 layer, exhibits steady-state power conversion efficiency (PCE) of 14.85% under AM 1.5G 100 mW . cm(-2) illumination. This renders ZSO a promising candidate as electron-conducting electrode for the highly efficient flexible PSC applications.ope
- …
