18,464 research outputs found
Terahertz quantum plasmonics at nanoscales and angstrom scales
Through the manipulation of metallic structures, light-matter interaction can enter into the realm of quantum mechanics. For example, intense terahertz pulses illuminating a metallic nanotip can promote terahertz field-driven electron tunneling to generate enormous electron emission currents in a subpicosecond time scale. By decreasing the dimension of the metallic structures down to the nanoscale and angstrom scale, one can obtain a strong field enhancement of the incoming terahertz field to achieve atomic field strength of the order of V/nm, driving electrons in the metal into tunneling regime by overcoming the potential barrier. Therefore, designing and optimizing the metal structure for high field enhancement are an essential step for studying the quantum phenomena with terahertz light. In this review, we present several types of metallic structures that can enhance the coupling of incoming terahertz pulses with the metals, leading to a strong modification of the potential barriers by the terahertz electric fields. Extreme nonlinear responses are expected, providing opportunities for the terahertz light for the strong light-matter interaction. Starting from a brief review about the terahertz field enhancement on the metallic structures, a few examples including metallic tips, dipole antenna, and metal nanogaps are introduced for boosting the quantum phenomena. The emerging techniques to control the electron tunneling driven by the terahertz pulse have a direct impact on the ultrafast science and on the realization of next-generation quantum devices
Recommended from our members
Further improving the accuracy of fetal foot length to confirm gestational duration: Additional data.
Strategic Asset Seeking and Innovation Performance: The Role of Innovation Capabilities and Host Country Institutions
fals
Flux Noise in MgB2 Thin Films
We have performed flux noise and AC-susceptibility measurements on two 400 nm
thick MgB films. Both measurement techniques give information about the
vortex dynamics in the sample, and hence the superconducting transition, and
can be linked to each other through the fluctuation-dissipation-theorem. The
transition widths for the two films are 0.3 and 0.8 K, respectively, and the
transitions show a multi step-like behavior in the AC-susceptibility
measurements. The same phenomenon is observed in the flux noise measurements
through a change in the frequency dependence of the spectral density at each
step in the transition. The results are discussed and interpreted in terms of
vortices carrying an arbitrary fraction of a flux quantum as well as in terms
of different macroscopic regions in the films having slightly different
compositions, and hence, different critical temperatures.Comment: 8 pages, 4 figures, conference contribution to "Fluctuations and
Noise", Santa Fe, New mexico 1-4 june 200
MgB2 superconducting thin films with a transition temperature of 39 Kelvin
We report the growth of high-quality c-axis-oriented epitaxial MgB2 thin
films by using a pulsed laser deposition technique. The thin films grown on
(1`1 0 2) Al2O3 substrates show a Tc of 39 K. The critical current density in
zero field is ~ 6 x 10^6 A/cm2 at 5 K and ~ 3 x 10^5 A/cm^2 at 35 K, suggesting
that this compound has great potential for electronic device applications, such
as microwave devices and superconducting quantum interference devices. For the
films deposited on Al2O3, X-ray diffraction patterns indicate a highly
c-axis-oriented crystal structure perpendicular to the substrate surface.Comment: 3 pages and 3 figure
Growth of superconducting MgB2 thin films via postannealing techniques
We report the effect of annealing on the superconductivity of MgB2 thin films
as functions of the postannealing temperature in the range from 700 C to 950 C
and of the postannealing time in the range from 30 min to 120 min. On annealing
at 900 C for 30 min, we obtained the best-quality MgB2 films with a transition
temperature of 39 K and a critical current density of ~ 10^7 A/cm^2. Using the
scanning electron microscopy, we also investigated the film growth mechanism.
The samples annealed at higher temperatures showed the larger grain sizes,
well-aligned crystal structures with preferential orientations along the
c-axis, and smooth surface morphologies. However, a longer annealing time
prevented the alignment of grains and reduced the superconductivity, indicating
a strong interfacial reaction between the substrate and the MgB2 film.Comment: 7 pages, 4 figures include
Universal scaling of the Hall resistivity in MgB2 superconductors
The mixed-state Hall resistivity and the longitudinal resistivity in
superconducting MgB2 thin films have been investigated as a function of the
magnetic field over a wide range of current densities from 100 to 10000 A/cm^2.
We observe a universal Hall scaling behavior with a constant exponent of 2.0,
which is independent of the magnetic field, the temperature, and the current
density. This result can be interpreted well within the context of recent
theories.Comment: 4 page
- …
