15,748 research outputs found
Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs
Deep Learning as a Service (DLaaS) stands as a promising solution for
cloud-based inference applications. In this setting, the cloud has a
pre-learned model whereas the user has samples on which she wants to run the
model. The biggest concern with DLaaS is user privacy if the input samples are
sensitive data. We provide here an efficient privacy-preserving system by
employing high-end technologies such as Fully Homomorphic Encryption (FHE),
Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE,
with its widely-known feature of computing on encrypted data, empowers a wide
range of privacy-concerned applications. This comes at high cost as it requires
enormous computing power. In this paper, we show how to accelerate the
performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs
to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution
achieved a sufficient security level (> 80 bit) and reasonable classification
accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of
latency, we could classify an image in 5.16 seconds and 304.43 seconds for
MNIST and CIFAR-10, respectively. Our system can also classify a batch of
images (> 8,000) without extra overhead
Recommended from our members
Bank competition, information specialization and innovation
Complementary to rich existing evidence on bank competition and corporate innovation, this paper aims to investigate the impacts of bank competition on innovation efficiencies, in terms of both R&D input and output at firm level. By acknowledging the role played by information asymmetries in financing innovation, we also examine the moderating effects of information specialization at both industry and firm level on corporate innovation. Analyzing innovation and bank structure data from U.S. between 1992 and 2010, we show novel evidence that increased bank competition improves innovation efficiencies in terms of both R&D input (investment) and output (patents and profits generated by R&D). In addition, we find bank competition has a greater favorable effect on innovation for those firms with more specialized information, such as those operating in an industry with more dispersed productivity growth and those with more concentrated patent types. Overall, our findings support market power hypothesis and banking strategic theory where bank competition improves credit supply to corporate innovation
ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers
Solving the electronic structure from a generalized or standard eigenproblem
is often the bottleneck in large scale calculations based on Kohn-Sham
density-functional theory. This problem must be addressed by essentially all
current electronic structure codes, based on similar matrix expressions, and by
high-performance computation. We here present a unified software interface,
ELSI, to access different strategies that address the Kohn-Sham eigenvalue
problem. Currently supported algorithms include the dense generalized
eigensolver library ELPA, the orbital minimization method implemented in
libOMM, and the pole expansion and selected inversion (PEXSI) approach with
lower computational complexity for semilocal density functionals. The ELSI
interface aims to simplify the implementation and optimal use of the different
strategies, by offering (a) a unified software framework designed for the
electronic structure solvers in Kohn-Sham density-functional theory; (b)
reasonable default parameters for a chosen solver; (c) automatic conversion
between input and internal working matrix formats, and in the future (d)
recommendation of the optimal solver depending on the specific problem.
Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800
basis functions) on distributed memory supercomputing architectures.Comment: 55 pages, 14 figures, 2 table
- …
