17 research outputs found
In-situ upgrading of Napier grass pyrolysis vapour over microporous and hierarchical mesoporous zeolites
This study presents in-situ upgrading of pyrolysis
vapour derived from Napier grass over microporous and
mesoporous ZSM-5 catalysts. It evaluates effect of process
variables such catalyst–biomass ratio and catalyst type in
a vertical fixed bed pyrolysis system at 600 °C, 50 °C/min
under 5 L/min nitrogen flow. Increasing catalyst–biomass
ratio during the catalytic process with microporous structure
reduced production of organic phase bio-oil by approximately
7.0 wt%. Using mesoporous catalyst promoted
nearly 4.0 wt% higher organic yield relative to microporous
catalyst, which translate to only about 3.0 wt% reduction
in organic phase compared to the yield of organic phase
from non-catalytic process. GC–MS analysis of bio-oil
organic phase revealed maximum degree of deoxygenation
of about 36.9% with microporous catalyst compared to
the mesoporous catalysts, which had between 39 and 43%.
Mesoporous catalysts promoted production olefins and
alkanes, normal phenol, monoaromatic hydrocarbons while
microporous catalyst favoured the production of alkenes
and polyaromatic hydrocarbons. There was no significant increase in the production of normal phenols over microporous catalyst due to its inability to transform the methoxyphenols and methoxy aromatics. This study demonstrated that upgrading of Napier grass pyrolysis vapour over mesoporous ZSM-5 produced bio-oil with improved physicochemical properties
Effects of pretreatments of Napier Grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics
The depletion of fossil fuel reserves has led to
increasing interest in liquid bio-fuel from renewable biomass. Biomass is a complex organic material consisting of
different degrees of cellulose, hemicellulose, lignin,
extractives and minerals. Some of the mineral elements
tend to retard conversions, yield and selectivity during
pyrolysis processing. This study is focused on the extraction of mineral retardants from Napier grass using deionized water, dilute sodium hydroxide and sulfuric acid and subsequent pyrolysis in a fixed bed reactor. The raw biomass was characterized before and after each pretreatment
following standard procedure. Pyrolysis study was conducted
in a fixed bed reactor at 600 o�C, 30 �C/min and 30 mL/min N2 flow. Pyrolysis oil (bio-oil) collected was analyzed using standard analytic techniques. The bio-oil yield and characteristics from each pretreated sample were compared with oil from the non-pretreated sample. Bio-oil
yield from the raw sample was 32.06 wt% compared to
38.71, 33.28 and 29.27 wt% oil yield recorded from the
sample pretreated with sulfuric acid, deionized water and
sodium hydroxide respectively. GC–MS analysis of the oil
samples revealed that the oil from all the pretreated biomass had more value added chemicals and less ketones and
aldehydes. Pretreatment with neutral solvent generated
valuable leachate, showed significant impact on the ash
extraction, pyrolysis oil yield, and its composition and
therefore can be regarded as more appropriate for thermochemical conversion of Napier grass
Co-pyrolysis of Rice Husk with Underutilized Biomass Species: A Sustainable Route for Production of Precursors for Fuels and Valuable Chemicals
In this study, co-pyrolysis of rice husk with
underutilized biomass, Napier grass and sago waste was
carried out in a fixed bed reactor at 600 �C, 30 �C/min and
5 L/min nitrogen flowrate. Two-phase bio-oil (organic and
aqueous) was collected and characterized using standard
analytical techniques. 34.13–45.55 wt% total boil-oil yield
was recorded using assorted biomass compared to pure risk
husk biomass with 31.51 wt% yield. The organic phase
consist mainly benzene derivatives with higher proportion
in the oil from the co-pyrolysis process relative to the
organic phase from the pyrolysis of the individual biomass
while the aqueous phase in all cases was predominantly
water, acids, ketones, aldehydes, sugars and traces of
phenolics. This study has demonstrated a good approach
towards increasing valorization of rice husk in a single
reaction step for the production of high grade bio-oil,
which can be transformed into fuel and valuable chemicals
Designing Early Warning Flood Detection and Monitoring System via IoT
Abstract
Flooding is one of the biggest natural disasters that occurs frequently around the world. It can occur without warning and the after effect of it leaves great damage to the surrounding environment and exposes life threatening to citizen. Therefore, early flood detection and monitoring system with the implementation of Internet of Things and Global Positioning System is proposed in order to reduce the risks that may cause flooding. The aim of this project is to provide the information of a current water level in a drain. When water level increases to a certain level, the system will send a warning notification to users indicating three categories of water level, which are safe, warning and critical level. This system contains an ultrasonic sensor to detect the current water level and at the same time allows users to observe the period of the water level from their phone so that users are more aware of when flooding ought to happen. Moreover, the system consists of a flooding avoidance method that requires the usage of a solenoid as a shutter valve of the drain and water pump to pump out excessive water flow to a suitable place for water release purposes.</jats:p
Association of Homocysteine Levels With Blood Lead Levels and Micronutrients in the US General Population
Land use analysis and evaluation using GIS and remote sensing in the formulation and implementation of sustainable regional development strategy
Ultrasonic materials characterization is widely used to assess both properties and defects of structural components. Recently, the option of gas- or air-coupled ultrasonic testing has become a realistic possibility. In this paper we develop the application of resonant sound transmission methods through ambient air in anisotropic materials with the sound wavevector oriented in a general direction in an anisotropic laminate. Establishing and demontrating the importance of voltage contributions from rays not contained in the incident plane, for sound propagation in a non-symmetry direction, is the major result of this paper
Extreme Dry and Wet Events in the Pacific Region of Colombia estimated in the 21st Century Based on the Standardized Precipitation Index and CORDEX Climate Projections
The Pacific region of Colombia is known to be one of the most vulnerable to changes in precipitation patterns. A study was conducted using standardized precipitation index (SPI) analyses to understand the potential changes in precipitation in this region during the 21st century. The analyses were conducted using historical precipitation data from 1950 to 2005 and projected precipitation data from 2022 to 2100 under the Coordinated Regional Climate Downscaling Experiment (CORDEX) climate scenarios (RCP 4.5 and RCP 8.5). The results of the study showed that compared to historical data, SPI3 precipitation in this region is predicted to increase by 2040 under both climatic scenarios. However, in the 2041–2070 period, the region is expected to be wetter under RCP 8.5, although the difference between the two scenarios was not statistically significant. Similarly, SPI 6 precipitation is predicted to increase in the 2022–2040 and 2071–2100 periods under both scenarios. SPI 12 precipitation is also predicted to increase in the 2022–2040 period under RCP 4.5. In the 2041–2070 period, dryness is predicted to be more frequent under RCP 4.5, and wetness is predicted under RCP 8.5. The findings of this study can help in determining the most pertinent reference periods and computation time increments for evaluating the effects of future climate change on agricultural production and food security in the Pacific region of Colombia. It suggests that changes in precipitation patterns are likely to occur in the coming decades, which may significantly impact crop growth, water availability, and other aspects of agricultural production.</jats:p
