25 research outputs found
Erosion mechanisms during abrasive waterjet machining: model microstructures and single particle experiments
The erosion mechanisms during abrasive waterjet (AWJ) machining have been examined for a variety of materials. However, no systematic study has considered the effect of the microstructure–property relationship on the erosion mechanisms in metals. In this work, the influence of microstructure and mechanical properties on the erosion mechanisms is investigated using AWJ controlled-depth milling and single particle impact experiments performed on nanocrystalline, microcrystalline and single crystal nickel samples. The resulting footprints and subsurface microstructure evolution were analysed using advanced characterization techniques. The erosion rate of the target metal is found to correlate positively with grain size and negatively with hardness but this correlation is nonlinear. The subsurface microstructure of the single crystal and microcrystalline are altered, while only the texture of the nanocrystalline nickel is modified. The grain refinement mechanism observed in microcrystalline and single crystal microstructure is elucidated by electron backscatter diffraction. It proceeds by the generation of dislocations under severe plastic deformation, which transforms into subgrains before forming new grains under further strain. Therefore, severe plastic deformation induced by AWJ machining leads to surface nanocrystallization and induces substantial subsurface work-hardening, as revealed by nanoindentation tests and confirmed by single particle impacts, with the consequence that the erosion rate decreases with decreasing grain size. This work clarifies the erosion mechanisms in pure metals and highlights the dynamic nature of AWJ machining as a result of the complex interplay between microstructure, mechanical properties and material removal mechanisms, providing new insights into AWJ controlled-depth milling technique
Stable Quantum-Correlated Many Body States through Engineered Dissipation
Engineered dissipative reservoirs have the potential to steer many-body
quantum systems toward correlated steady states useful for quantum simulation
of high-temperature superconductivity or quantum magnetism. Using up to 49
superconducting qubits, we prepared low-energy states of the transverse-field
Ising model through coupling to dissipative auxiliary qubits. In one dimension,
we observed long-range quantum correlations and a ground-state fidelity of 0.86
for 18 qubits at the critical point. In two dimensions, we found mutual
information that extends beyond nearest neighbors. Lastly, by coupling the
system to auxiliaries emulating reservoirs with different chemical potentials,
we explored transport in the quantum Heisenberg model. Our results establish
engineered dissipation as a scalable alternative to unitary evolution for
preparing entangled many-body states on noisy quantum processors
Phase transition in Random Circuit Sampling
Quantum computers hold the promise of executing tasks beyond the capability
of classical computers. Noise competes with coherent evolution and destroys
long-range correlations, making it an outstanding challenge to fully leverage
the computation power of near-term quantum processors. We report Random Circuit
Sampling (RCS) experiments where we identify distinct phases driven by the
interplay between quantum dynamics and noise. Using cross-entropy benchmarking,
we observe phase boundaries which can define the computational complexity of
noisy quantum evolution. We conclude by presenting an RCS experiment with 70
qubits at 24 cycles. We estimate the computational cost against improved
classical methods and demonstrate that our experiment is beyond the
capabilities of existing classical supercomputers
Phase transitions in random circuit sampling.
Undesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution in the nominally available computational space. This noise is an outstanding challenge when leveraging the computation power of near-term quantum processors1. It has been shown that benchmarking random circuit sampling with cross-entropy benchmarking can provide an estimate of the effective size of the Hilbert space coherently available2-8. Nevertheless, quantum algorithms' outputs can be trivialized by noise, making them susceptible to classical computation spoofing. Here, by implementing an algorithm for random circuit sampling, we demonstrate experimentally that two phase transitions are observable with cross-entropy benchmarking, which we explain theoretically with a statistical model. The first is a dynamical transition as a function of the number of cycles and is the continuation of the anti-concentration point in the noiseless case. The second is a quantum phase transition controlled by the error per cycle; to identify it analytically and experimentally, we create a weak-link model, which allows us to vary the strength of the noise versus coherent evolution. Furthermore, by presenting a random circuit sampling experiment in the weak-noise phase with 67 qubits at 32 cycles, we demonstrate that the computational cost of our experiment is beyond the capabilities of existing classical supercomputers. Our experimental and theoretical work establishes the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors
Measurement-induced entanglement and teleportation on a noisy quantum processor
Measurement has a special role in quantum theory: by collapsing the
wavefunction it can enable phenomena such as teleportation and thereby alter
the "arrow of time" that constrains unitary evolution. When integrated in
many-body dynamics, measurements can lead to emergent patterns of quantum
information in space-time that go beyond established paradigms for
characterizing phases, either in or out of equilibrium. On present-day NISQ
processors, the experimental realization of this physics is challenging due to
noise, hardware limitations, and the stochastic nature of quantum measurement.
Here we address each of these experimental challenges and investigate
measurement-induced quantum information phases on up to 70 superconducting
qubits. By leveraging the interchangeability of space and time, we use a
duality mapping, to avoid mid-circuit measurement and access different
manifestations of the underlying phases -- from entanglement scaling to
measurement-induced teleportation -- in a unified way. We obtain finite-size
signatures of a phase transition with a decoding protocol that correlates the
experimental measurement record with classical simulation data. The phases
display sharply different sensitivity to noise, which we exploit to turn an
inherent hardware limitation into a useful diagnostic. Our work demonstrates an
approach to realize measurement-induced physics at scales that are at the
limits of current NISQ processors
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Understanding universal aspects of quantum dynamics is an unresolved problem
in statistical mechanics. In particular, the spin dynamics of the 1D Heisenberg
model were conjectured to belong to the Kardar-Parisi-Zhang (KPZ) universality
class based on the scaling of the infinite-temperature spin-spin correlation
function. In a chain of 46 superconducting qubits, we study the probability
distribution, , of the magnetization transferred across the
chain's center. The first two moments of show superdiffusive
behavior, a hallmark of KPZ universality. However, the third and fourth moments
rule out the KPZ conjecture and allow for evaluating other theories. Our
results highlight the importance of studying higher moments in determining
dynamic universality classes and provide key insights into universal behavior
in quantum systems
Non-Abelian braiding of graph vertices in a superconducting processor
Indistinguishability of particles is a fundamental principle of quantum
mechanics. For all elementary and quasiparticles observed to date - including
fermions, bosons, and Abelian anyons - this principle guarantees that the
braiding of identical particles leaves the system unchanged. However, in two
spatial dimensions, an intriguing possibility exists: braiding of non-Abelian
anyons causes rotations in a space of topologically degenerate wavefunctions.
Hence, it can change the observables of the system without violating the
principle of indistinguishability. Despite the well developed mathematical
description of non-Abelian anyons and numerous theoretical proposals, the
experimental observation of their exchange statistics has remained elusive for
decades. Controllable many-body quantum states generated on quantum processors
offer another path for exploring these fundamental phenomena. While efforts on
conventional solid-state platforms typically involve Hamiltonian dynamics of
quasi-particles, superconducting quantum processors allow for directly
manipulating the many-body wavefunction via unitary gates. Building on
predictions that stabilizer codes can host projective non-Abelian Ising anyons,
we implement a generalized stabilizer code and unitary protocol to create and
braid them. This allows us to experimentally verify the fusion rules of the
anyons and braid them to realize their statistics. We then study the prospect
of employing the anyons for quantum computation and utilize braiding to create
an entangled state of anyons encoding three logical qubits. Our work provides
new insights about non-Abelian braiding and - through the future inclusion of
error correction to achieve topological protection - could open a path toward
fault-tolerant quantum computing
Synthesis of lipopolysaccharide-protein conjugate vaccines with conserved internal oligosaccharide epitopes.: Carbohyd.Res.
NRC publication: Ye
