5,433 research outputs found

    Multiple solutions for asteroid orbits: Computational procedure and applications

    Get PDF
    We describe the Multiple Solutions Method, a one-dimensional sampling of the six-dimensional orbital confidence region that is widely applicable in the field of asteroid orbit determination. In many situations there is one predominant direction of uncertainty in an orbit determination or orbital prediction, i.e., a ``weak'' direction. The idea is to record Multiple Solutions by following this, typically curved, weak direction, or Line Of Variations (LOV). In this paper we describe the method and give new insights into the mathematics behind this tool. We pay particular attention to the problem of how to ensure that the coordinate systems are properly scaled so that the weak direction really reflects the intrinsic direction of greatest uncertainty. We also describe how the multiple solutions can be used even in the absence of a nominal orbit solution, which substantially broadens the realm of applications. There are numerous applications for multiple solutions; we discuss a few problems in asteroid orbit determination and prediction where we have had good success with the method. In particular, we show that multiple solutions can be used effectively for potential impact monitoring, preliminary orbit determination, asteroid identification, and for the recovery of lost asteroids

    Comparison of the fluctuation influence on the resistive properties of the mixed state of BiSrCaCuO and of thin films of conventional superconductor

    Full text link
    The resistive properties of layered HTSC BiSrCaCuO in the mixed state are compared with those of thin films of conventional superconductors with weak disorders (amorphous Nb_{1-x}0_{x} films) and with strong disorders (Nb_{1-x}O_{x} films with small grain structure). The excess conductivity is considered as a function of superconducting electron density and phase coherence length. It is shown that the transition to the Abrikosov state differs from the ideal case both in BiSrCaCuO and Nb_{1-x}O_{x} films, i.e. the appearance of long-range phase coherence is continuous transition in both cases. The quantitative difference between thin films with weak and strong disorders is greater than the one between layered HTSC and conventional superconductors, showing that the dimensionality of the system, rather than the critical temperature, is the key factor ruling fluctuation effectsComment: 17 pages, 5 figure

    A finite element-discrete element approach for the analysis of the venice trans-lagoon railway bridge

    Get PDF
    In this paper, the feasibility of the utilization of a combined finite element/discrete element (FE-DE) approach to investigate the behavior of masonry arch bridges is proposed. Attention is paid to the assessment of the load carrying capacity by means of a suitable coupled FE-DE two-dimensional approach. This paper outlines the fields and limits of applicability of the FE-DE method to the study of masonry arch bridges. The main contribution is to evaluate the applicability of FE-DE, in particular its reliability to describe the nonlinear behavior of masonry arch bridges under increasing static loads, to catch kinematic failure mechanisms and collapse load multipliers, as well as to evaluate the role played by the backfill. A discussion on a possible approach to FE-DE modelling of the Venice trans-Lagoon masonry arch bridge is proposed. With such a purpose, a series of parametric analyses has been conducted in order to evaluate the influence of the different parameters involved on the behavior of the bridges. Pushover analyses have been performed to investigate the nonlinear behavior up to the collapse and up to a clear formation of a failure mechanism in the model

    Implementation and validation of a total displacement non-linear homogenization approach for in-plane loaded masonry

    Get PDF
    Two simple homogenization models suitable for the non-linear analysis of masonry walls in-plane loaded are presented. A rectangular running bond elementary cell is discretized by means of twenty-four constant stress threenoded plane-stress triangular elements and linear two-noded interfaces. Non-linearity is concentrated on mortar reduced to interface, exhibiting a holonomic behavior with softening. The paper shows how the mechanical problem in the unit cell can be characterized by very few displacement/stress variables and how homogenized stress-strain behavior can be evaluated by means of a small-scale system of non-linear equations. At a structural level, it is therefore not necessary to solve a homogenization problem at each load step in each Gauss point and a direct implementation into commercial software as an external user supplied subroutine is straightforward. Nonlinear structural analyses are conducted on a variety of different problems, for which experimental and numerical data are available in the literature, in order to show that accurate results can be obtained with a limited computational effort

    Challenges in Dental Statistics: Survey Methodology Topics

    Get PDF
    This paper gathers some contributions concerning survey methodology in dental research, as discussed during the first Workshop of the SISMEC STATDENT working group on statistical methods and applications in dentistry, held in Ancona on the 28th September 2011. The first contribution deals with the European Global Oral Health Indicators Development (EGOHID) Project which proposed a comprehensive and standardized system of epidemiological tools (questionnaires and clinical forms) for national data collection on oral health in Europe. The second contribution regards the design and conduct of trials to evaluate the clinical efficacy and safety of toothbrushes and mouthrinses. Finally, a flexible and effective tool used to trace dental age reference charts tailored to Italian children was presented

    The large amplitude outburst of the young star HBC 722 in NGC 7000/IC 5070, a new FU Orionis candidate

    Full text link
    We report the discovery of a large amplitude outburst from the young star HBC 722 (LkHA 188 G4) located in the region of NGC 7000/IC 5070. On the basis of photometric and spectroscopic observations, we argue that this outburst is of the FU Orionis type. We gathered photometric and spectroscopic observations of the object both in the pre-outburst state and during a phase of increase in its brightness. The photometric BVRI data (Johnson-Cousins system) that we present were collected from April 2009 to September 2010. To facilitate transformation from instrumental measurements to the standard system, fifteen comparison stars in the field of HBC 722 were calibrated in the BVRI bands. Optical spectra of HBC 722 were obtained with the 1.3-m telescope of Skinakas Observatory (Crete, Greece) and the 0.6-m telescope of Schiaparelli Observatory in Varese (Italy). The pre-outburst photometric and spectroscopic observations of HBC 722 show both low amplitude photometric variations and an emission-line spectrum typical of T Tau stars. The observed outburst started before May 2010 and reached its maximum brightness in September 2010, with a recorded Delta V~4.7 mag. amplitude. Simultaneously with the increase in brightness the color indices changed significantly and the star became appreciably bluer. The light curve of HBC 722 during the period of rise in brightness is similar to the light curves of the classical FUors - FU Ori and V1057 Cyg. The spectral observations during the time of increase in brightness showed significant changes in both the profiles and intensity of the spectral lines. Only H alpha remained in emission, while the H beta, Na I 5890/5896, Mg I triplet 5174, and Ba II 5854/6497 lines were in strong absorption.Comment: 4 pages, 6 figures, accepted for publication in A&

    Physical Investigation of the Potentially Hazardous Asteroid (144898) 2004 VD17

    Full text link
    In this paper we present the observational campaign carried out at ESO NTT and VLT in April and May 2006 to investigate the nature and the structure of the Near Earth Object (144898) 2004 VD17. In spite of a great quantity of dynamical information, according to which it will have a close approach with the Earth in the next century, the physical properties of this asteroid are largely unknown. We performed visible and near--infrared photometry and spectroscopy, as well as polarimetric observations. Polarimetric and spectroscopic data allowed us to classify 2004 VD17 as an E-type asteroid. A good agreement was also found with the spectrum of the aubrite meteorite Mayo Belwa. On the basis of the polarimetric albedo (p_v=0.45) and of photometric data, we estimated a diameter of about 320 m and a rotational period of about 2 hours. The analysis of the results obtained by our complete survey have shown that (144898) 2004 VD17 is a peculiar NEO, since it is close to the breakup limits for fast rotator asteroids, as defined by Pravec and Harris (2000). These results suggest that a more robust structure must be expected, as a fractured monolith or a rubble pile in a "strength regime" (Holsapple 2002).Comment: 32 pages, 7 figure, paper accepted for publication in Icaru

    Chirikov Diffusion in the Asteroidal Three-Body Resonance (5,-2,-2)

    Get PDF
    The theory of diffusion in many-dimensional Hamiltonian system is applied to asteroidal dynamics. The general formulations developed by Chirikov is applied to the Nesvorn\'{y}-Morbidelli analytic model of three-body (three-orbit) mean-motion resonances (Jupiter-Saturn-asteroid system). In particular, we investigate the diffusion \emph{along} and \emph{across} the separatrices of the (5,-2,-2) resonance of the (490) Veritas asteroidal family and their relationship to diffusion in semi-major axis and eccentricity. The estimations of diffusion were obtained using the Melnikov integral, a Hadjidemetriou-type sympletic map and numerical integrations for times up to 10810^{8} years.Comment: 27 pages, 6 figure
    corecore