4,300 research outputs found

    MTOR cross-talk in cancer and potential for combination therapy

    Get PDF
    The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 and mTORC2, which interact with each other and with several elements of other signaling pathways. In the past few years, many new insights into mTOR function and regulation have been gained and extensive genetic and pharmacological studies in mice have enhanced our understanding of how mTOR dysfunction contributes to several diseases, including cancer. Single-agent mTOR targeting, mostly using rapalogs, has so far met limited clinical success; however, due to the extensive cross-talk between mTOR and other pathways, combined approaches are the most promising avenues to improve clinical efficacy of available therapeutics and overcome drug resistance. This review provides a brief and up-to-date narrative on the regulation of mTOR function, the relative contributions of mTORC1 and mTORC2 complexes to cancer development and progression, and prospects for mTOR inhibition as a therapeutic strategy

    Role of mTOR signaling in tumor microenvironment. An overview

    Get PDF
    The mammalian target of rapamycin (mTOR) pathway regulates major processes by integrating a variety of exogenous cues, including diverse environmental inputs in the tumor microenvironment (TME). In recent years, it has been well recognized that cancer cells co-exist and co-evolve with their TME, which is often involved in drug resistance. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both the tumor immunity and angiogenesis. The activation of mTOR signaling is associated with these pro-oncogenic cellular processes, making mTOR a promising target for new combination therapies. This review highlights the role of mTOR signaling in the characterization and the activity of the TME’s elements and their implications in cancer immunotherapy

    First-line erlotinib and fixed dose-rate gemcitabine for advanced pancreatic cancer

    Get PDF
    AIM: To investigate activity, toxicity, and prognostic factors for survival of erlotinib and fixed dose-rate gemcitabine (FDR-Gem) in advanced pancreatic cancer. METHODS: We designed a single-arm prospective, multicentre, open-label phase II study to evaluate the combination of erlotinib (100 mg/d, orally) and weekly FDR-Gem (1000 mg/m2, infused at 10 mg/m2per minute) in a population of previously untreated patients with locally advanced, inoperable, or metastatic pancreatic cancer. Primary endpoint was the rate of progression-free survival at 6 mo (PFS-6); secondary endpoints were overall response rate (ORR), response duration, tolerability, overall survival (OS), and clinical benefit. Treatment was not considered to be of further interest if the PFS-6 was < 20% (p0 = 20%), while a PFS-6 > 40% would be of considerable interest (p1 = 40%); with a 5% rejection error (α = 5%) and a power of 80%, 35 fully evaluable patients with metastatic disease were required to be enrolled in order to complete the study. Analysis of prognostic factors for survival was also carried out. RESULTS: From May 2007 to September 2009, 46 patients were enrolled (male/female: 25/21; median age: 64 years; median baseline carbohydrate antigen 19-9 (CA 19-9): 897 U/mL; locally advanced/metastatic disease: 5/41). PFS-6 and median PFS were 30.4% and 14 wk (95%CI: 10-19), respectively; 1-year and median OS were 20.2% and 26 wk (95%CI: 8-43). Five patients achieved an objective response (ORR: 10.9%, 95%CI: 1.9-19.9); disease control rate was 56.5% (95%CI: 42.2-70.8); clinical benefit rate was 43.5% (95%CI: 29.1-57.8). CA 19-9 serum levels were decreased by > 25% as compared to baseline in 14/23 evaluable patients (63.6%). Treatment was well-tolerated, with skin rash being the most powerful predictor of both longer PFS (P < 0.0001) and OS (P = 0.01) at multivariate analysis (median OS for patients with or without rash: 42 wk vs 15 wk, respectively, Log-rank P = 0.03). Additional predictors of better outcome were: CA 19-9 reduction, female sex (for PFS), and good performance status (for OS). CONCLUSION: Primary study endpoint was not met. However, skin rash strongly predicted erlotinib efficacy, suggesting that a pharmacodynamic-based strategy for patient selection deserves further investigation

    New insights on the functional role of URG7 in the cellular response to ER stress.

    Get PDF
    BACKGROUND INFORMATION: Up-regulated Gene clone 7 (URG7) is an ER resident protein, whose expression is upregulated in the presence of hepatitis B virus X antigen (HBxAg) during HBV infection. In virus-infected hepatocytes, URG7 shows an anti-apoptotic activity due to the PI3K/AKT signaling activation, does not seem to have tumorigenic properties, but it appears to promote the development and progression of fibrosis. However, the molecular mechanisms underlying URG7 activity remain largely unknown. RESULTS: To shed light on URG7 activity, we first analyzed its interactome in HepG2 transfected cells: this analysis suggests that URG7 could have a role in affecting protein synthesis, folding and promoting proteins degradation. Moreover, keeping into account its subcellular localization in the ER and that several viral infections give rise to ER stress, a panel of experiments was performed to evaluate a putative role of URG7 in ER stress. Our main results demonstrate that in ER stressed cells URG7 is able to modulate the expression of Unfolded Protein Response (UPR) markers toward survival outcomes, upregulating GRP78 protein and downregulating the pro-apoptotic protein CHOP. Furthermore, URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing caspase 3 activation. CONCLUSIONS: All together these data suggest that URG7 plays a pivotal role as a reliever of ER stress-induced apoptosis. SIGNIFICANCE: This is the first characterization of URG7 activity under ER stress conditions. The results presented here will help to hypothesize new strategies to counteract the antiapoptotic activity of URG7 in the context of the viral infection. This article is protected by copyright. All rights reserved

    Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia

    Get PDF
    Several chemo-resistance mechanisms including the Bcl-2 protein family overexpression and constitutive activation of the PI3K/Akt/mTOR signaling have been documented in acute lymphoblastic leukemia (ALL), encouraging targeted approaches to circumvent this clinical problem. Here we analyzed the activity of the BH3 mimetic ABT-737 in ALL, exploring the synergistic effects with the mTOR inhibitor CCI-779 on ABT-737 resistant cells. We showed that a low Mcl-1/Bcl-2 plus Bcl-xL protein ratio determined ABT-737 responsiveness. ABT-737 exposure further decreased Mcl-1, inducing apoptosis on sensitive models and primary samples, while not affecting resistant cells. Co-inhibition of Bcl-2 and the mTOR pathway resulted cytotoxic on ABT-737 resistant models, by downregulating mTORC1 activity and Mcl-1 in a proteasome-independent manner. Although Mcl-1 seemed to be critical, ectopic modulation did not correlate with apoptosis changes. Importantly, dual targeting proved effective on ABT-737 resistant samples, showing additive/synergistic effects. Together, our results show the efficacy of BH3 mimetics as single agent in the majority of the ALL samples and demonstrate that resistance to ABT-737 mostly correlated with Mcl-1 overexpression. Co-targeting of the Bcl-2 protein family and mTOR pathway enhanced drug-induced cytotoxicity by suppressing Mcl-1, providing a novel therapeutic approach to overcome BH3 mimetics resistance in ALL

    Targeted metabolomic profiling in rat tissues reveals sex differences

    Get PDF
    Sex differences affect several diseases and are organ-and parameter-specific. In humans and animals, sex differences also influence the metabolism and homeostasis of amino acids and fatty acids, which are linked to the onset of diseases. Thus, the use of targeted metabolite profiles in tissues represents a powerful approach to examine the intermediary metabolism and evidence for any sex differences. To clarify the sex-specific activities of liver, heart and kidney tissues, we used targeted metabolomics, linear discriminant analysis (LDA), principal component analysis (PCA), cluster analysis and linear correlation models to evaluate sex and organ-specific differences in amino acids, free carnitine and acylcarnitine levels in male and female Sprague-Dawley rats. Several intra-sex differences affect tissues, indicating that metabolite profiles in rat hearts, livers and kidneys are organ-dependent. Amino acids and carnitine levels in rat hearts, livers and kidneys are affected by sex: male and female hearts show the greatest sexual dimorphism, both qualitatively and quantitatively. Finally, multivariate analysis confirmed the influence of sex on the metabolomics profiling. Our data demonstrate that the metabolomics approach together with a multivariate approach can capture the dynamics of physiological and pathological states, which are essential for explaining the basis of the sex differences observed in physiological and pathological conditions

    Dual targeting of HER3 and MEK may overcome HER3-dependent drug-resistance of colon cancers

    Get PDF
    Although the medical treatment of colorectal cancer has evolved greatly in the last years, a significant portion of early-stage patients develops recurrence after therapies. The current clinical trials are directed to evaluate new drug combinations and treatment schedules. By the use of patient-derived or established colon cancer cell lines, we found that the tyrosine kinase receptor HER3 is involved in the mechanisms of resistance to therapies. In agreement, the immunohistochemical analysis of total and phospho-HER3 expression in 185 colorectal cancer specimens revealed a significant correlation with lower disease-free survival. Targeting HER3 by the use of the monoclonal antibody patritumab we found induction of growth arrest in all cell lines. Despite the high efficiency of patritumab in abrogating the HER3-dependent activation of PI3K pathway, the HER2 and EGFR-dependent MAPK pathway is activated as a compensatory mechanism. Interestingly, we found that the MEK-inhibitor trametinib inhibits, as expected, the MAPK pathway but induces the HER3-dependent activation of PI3K pathway. The combined treatment results in the abrogation of both PI3K and MAPK pathways and in a significant reduction of cell proliferation and survival. These data suggest a new strategy of therapy for HER3-overexpressing colon cancers

    Human bony labyrinth is an indicator of population history and dispersal from Africa.

    Get PDF
    The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype-phenotype comparisons

    Synergistic Formation of Radicals by Irradiation with Both Vacuum Ultraviolet and Atomic Hydrogen: A Real-Time In Situ Electron Spin Resonance Study

    Full text link
    We report on the surface modification of polytetrafluoroethylene (PTFE) as an example of soft- and bio-materials that occur under plasma discharge by kinetics analysis of radical formation using in situ real-time electron spin resonance (ESR) measurements. During irradiation with hydrogen plasma, simultaneous measurements of the gas-phase ESR signals of atomic hydrogen and the carbon dangling bond (C-DB) on PTFE were performed. Dynamic changes of the C-DB density were observed in real time, where the rate of density change was accelerated during initial irradiation and then became constant over time. It is noteworthy that C-DBs were formed synergistically by irradiation with both vacuum ultraviolet (VUV) and atomic hydrogen. The in situ real-time ESR technique is useful to elucidate synergistic roles during plasma surface modification.Comment: 14 pages, 4 figure

    Small inhibitor of Bcl-2, HA14-1, selectively enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast cancer cells

    Get PDF
    Inhibition or downregulation of Bcl-2 represents a new therapeutic approach to by-pass chemoresistance in cancer cells. Therefore, we explored the potential of this approach in breast cancer cells. Cisplatin and paclitaxel induced apoptosis in a dose-dependent manner in MCF-7 (drug-sensitive) and MDA-MB-231 (drug-insensitive) cells. Furthermore, when we transiently silenced Bcl-2, both cisplatin and paclitaxel induced apoptosis more than parental cells. Dose dependent induction of apoptosis by drugs was enhanced by the pre-treatment of these cells with HA14-1, a Bcl-2 inhibitor. Although the effect of cisplatin was significant on both cell lines, the effect of paclitaxel was much less potent only in MDA-MB-231 cells. To further understand the distinct role of drugs in MDA-MB-231 cells pretreated with HA14-1, caspases and Bcl-2 family proteins were studied. The apoptotic effect of cisplatin with or without HA14-1 pre-treatment is shown to be caspase-dependent. Among pro-apoptotic Bcl-2 proteins, Bax and Puma were found to be up-regulated whereas Bcl-2 and Bcl-x(L) were down-regulated when cells were pretreated with HA14-1 followed by paclitaxel or cisplatin. Enforced Bcl-2 expression in MDA-MB-231 cells abrogated the sensitizing effect of HA14-1 in cisplatin induced apoptosis. These results suggest that the potentiating effect of HA14-1 is drug and cell type specific and may not only depend on the inhibition of Bcl-2. Importantly, alteration of other pro-apoptotic or anti-apoptotic Bcl-2 family members may dictate the apoptotic response when HA14-1 is combined with chemotherapeutic drugs
    corecore