416 research outputs found

    An oil pipeline design problem

    Get PDF
    Copyright @ 2003 INFORMSWe consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points at given locations. The configuration of the network and sizes of pipes used must be chosen to minimize construction costs. This problem is expressed as a mixed-integer program, and solved both heuristically by Tabu Search and Variable Neighborhood Search methods and exactly by a branch-and-bound method. Two new types of valid inequalities are introduced. Tests are made with data from the South Gabon oil field and randomly generated problems.The work of the first author was supported by NSERC grant #OGP205041. The work of the second author was supported by FCAR (Fonds pour la Formation des Chercheurs et l’Aide à la Recherche) grant #95-ER-1048, and NSERC grant #GP0105574

    TimeMachine: Timeline Generation for Knowledge-Base Entities

    Full text link
    We present a method called TIMEMACHINE to generate a timeline of events and relations for entities in a knowledge base. For example for an actor, such a timeline should show the most important professional and personal milestones and relationships such as works, awards, collaborations, and family relationships. We develop three orthogonal timeline quality criteria that an ideal timeline should satisfy: (1) it shows events that are relevant to the entity; (2) it shows events that are temporally diverse, so they distribute along the time axis, avoiding visual crowding and allowing for easy user interaction, such as zooming in and out; and (3) it shows events that are content diverse, so they contain many different types of events (e.g., for an actor, it should show movies and marriages and awards, not just movies). We present an algorithm to generate such timelines for a given time period and screen size, based on submodular optimization and web-co-occurrence statistics with provable performance guarantees. A series of user studies using Mechanical Turk shows that all three quality criteria are crucial to produce quality timelines and that our algorithm significantly outperforms various baseline and state-of-the-art methods.Comment: To appear at ACM SIGKDD KDD'15. 12pp, 7 fig. With appendix. Demo and other info available at http://cs.stanford.edu/~althoff/timemachine

    Using network-flow techniques to solve an optimization problem from surface-physics

    Full text link
    The solid-on-solid model provides a commonly used framework for the description of surfaces. In the last years it has been extended in order to investigate the effect of defects in the bulk on the roughness of the surface. The determination of the ground state of this model leads to a combinatorial problem, which is reduced to an uncapacitated, convex minimum-circulation problem. We will show that the successive shortest path algorithm solves the problem in polynomial time.Comment: 8 Pages LaTeX, using Elsevier preprint style (macros included

    Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators

    No full text
    International audienceWe report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation. © 2011 American Physical Society

    A Multi-commodity network flow model for cloud service environments

    Get PDF
    Next-generation systems, such as the big data cloud, have to cope with several challenges, e.g., move of excessive amount of data at a dictated speed, and thus, require the investigation of concepts additional to security in order to ensure their orderly function. Resilience is such a concept, which when ensured by systems or networks they are able to provide and maintain an acceptable level of service in the face of various faults and challenges. In this paper, we investigate the multi-commodity flows problem, as a task within our D 2 R 2 +DR resilience strategy, and in the context of big data cloud systems. Specifically, proximal gradient optimization is proposed for determining optimal computation flows since such algorithms are highly attractive for solving big data problems. Many such problems can be formulated as the global consensus optimization ones, and can be solved in a distributed manner by the alternating direction method of multipliers (ADMM) algorithm. Numerical evaluation of the proposed model is carried out in the context of specific deployments of a situation-aware information infrastructure

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Rostral and caudal pharyngeal arches share a common neural crest ground pattern

    Get PDF
    In vertebrates, face and throat structures, such as jaw, hyoid and thyroid cartilages develop from a rostrocaudal metameric series of pharyngeal arches, colonized by cranial neural crest cells (NCCs). Colinear Hox gene expression patterns underlie arch specific morphologies, with the exception of the first (mandibular) arch, which is devoid of any Hox gene activity. We have previously shown that the first and second (hyoid) arches share a common, Hox-free, patterning program. However, whether or not more posterior pharyngeal arch neural crest derivatives are also patterned on the top of the same ground-state remained an unanswered question. Here, we show that the simultaneous inactivation of all Hoxa cluster genes in NCCs leads to multiple jaw and first arch-like structures, partially replacing second, third and fourth arch derivatives, suggesting that rostral and caudal arches share the same mandibular arch-like ground patterning program. The additional inactivation of the Hoxd cluster did not significantly enhance such a homeotic phenotype, thus indicating a preponderant role of Hoxa genes in patterning skeletogenic NCCs. Moreover, we found that Hoxa2 and Hoxa3 act synergistically to pattern third and fourth arch derivatives. These results provide insights into how facial and throat structures are assembled during development, and have implications for the evolution of the pharyngeal region of the vertebrate head

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
    corecore