6,805 research outputs found

    Magnetic Properties and Metastable States in Spin-Crossover Transition of Co-Fe Prussian Blue Analogues

    Full text link
    The combination of spin transitions and magnetic ordering provides an interesting structure of phase transitions in Prussian blue analogues (PBAs). To understand the structure of stable and metastable states of Co-Fe PBA, it is necessary to clarify free energy as a function of magnetization and the fraction of the high-temperature component. Including the magnetic interaction between high-temperature states, we study the magnetic phase transition of Co-Fe PBA in addition to spin transitions. Here, we take into account the degeneracy changes due to charge transfer between Co and Fe atoms accompanying the spin transition. In this study, the charge transfer between Co and Fe atoms is explicitly taken into account and also the ferrimagnetic structure of Co-Fe PBAs is expressed in the proper way. First, we found systematic changes in the structures of stable and metastable states as functions of system parameters using mean field theory. In particular, the existence of a metastable magnetic-ordered high-temperature state is confirmed at temperatures lower than that of the hysteresis region of spin transitions. Second, we found that the magnetic interaction causes complex ordering processes of a spin transition and a magnetic phase transition. The effect of a magnetic field on the phase structure is also investigated and we found metamagnetic magnetization processes. Finally, the dynamical properties of this metastable state are studied by Monte Carlo method.Comment: 17 pages, 11 figures, to be published in J. Phys. Soc. Japan; Fig. 1 replace

    Retrieval Properties of Hopfield and Correlated Attractors in an Associative Memory Model

    Full text link
    We examine a previouly introduced attractor neural network model that explains the persistent activities of neurons in the anterior ventral temporal cortex of the brain. In this model, the coexistence of several attractors including correlated attractors was reported in the cases of finite and infinite loading. In this paper, by means of a statistical mechanical method, we study the statics and dynamics of the model in both finite and extensive loading, mainly focusing on the retrieval properties of the Hopfield and correlated attractors. In the extensive loading case, we derive the evolution equations by the dynamical replica theory. We found several characteristic temporal behaviours, both in the finite and extensive loading cases. The theoretical results were confirmed by numerical simulations.Comment: 12 pages, 7 figure

    Finite Size Scaling of the 2D Six-Clock model

    Full text link
    We investigate the isotropic-anisotropic phase transition of the two-dimensional XY model with six-fold anisotropy, using Monte Carlo renormalization group method. The result indicates difficulty of observing asymptotic critical behavior in Monte Carlo simulations, owing to the marginal flow at the fixed point.Comment: Short note. revtex, 6 pages, 3 figures. To appear in J. Phys. Soc. Jpn. Vol.70 No. 2 (Feb 2001

    Response Functions Improving Performance in Analog Attractor Neural Networks

    Full text link
    In the context of attractor neural networks, we study how the equilibrium analog neural activities, reached by the network dynamics during memory retrieval, may improve storage performance by reducing the interferences between the recalled pattern and the other stored ones. We determine a simple dynamics that stabilizes network states which are highly correlated with the retrieved pattern, for a number of stored memories that does not exceed αN\alpha_{\star} N, where α[0,0.41]\alpha_{\star}\in[0,0.41] depends on the global activity level in the network and NN is the number of neurons.Comment: 13 pages (with figures), LaTex (RevTex), to appear on Phys.Rev.E (RC

    Quantum Decoherence at Finite Temperatures

    Get PDF
    We study measures of decoherence and thermalization of a quantum system SS in the presence of a quantum environment (bath) EE. The whole system is prepared in a canonical thermal state at a finite temperature. Applying perturbation theory with respect to the system-environment coupling strength, we find that under common Hamiltonian symmetries, up to first order in the coupling strength it is sufficient to consider the uncoupled system to predict decoherence and thermalization measures of SS. This decoupling allows closed form expressions for perturbative expansions for the measures of decoherence and thermalization in terms of the free energies of SS and of EE. Numerical results for both coupled and decoupled systems with up to 40 quantum spins validate these findings.Comment: 5 pages, 3 figure

    Effect of a Spin-1/2 Impurity on the Spin-1 Antiferromagnetic Heisenberg Chain

    Full text link
    Low-lying excited states as well as the ground state of the spin-1 antiferro- magnetic Heisenberg chain with a spin-1/2 impurity are investigated by means of a variational method and a method of numerical diagonalization. It is shown that 1) the impurity spin brings about massive modes in the Haldane gap, 2) when the the impurity-host coupling is sufficiently weak, the phenomenological Hamiltonian used by Hagiwara {\it et al.} in the analysis of ESR experimental results for NENP containing a small amount of spin-1/2 Cu impurities is equivalent to a more realistic Hamiltonian, as far as the energies of the low-lying states are concerned, 3) the results obtained by the variational method are in semi-quantitatively good agreement with those obtained by the numerical diagonalization.Comment: 11 pages, plain TeX (Postscript figures are included), KU-CCS-93-00

    Quantum Monte Carlo Study on Magnetization Processes

    Full text link
    A quantum Monte Carlo method combining update of the loop algorithm with the global flip of the world line is proposed as an efficient method to study the magnetization process in an external field, which has been difficult because of inefficiency of the update of the total magnetization. The method is demonstrated in the one dimensional antiferromagnetic Heisenberg model and the trimer model. We attempted various other Monte Carlo algorithms to study systems in the external field and compared their efficiency.Comment: 5 pages, 9 figures; added references for section 1, corrected typo
    corecore