449 research outputs found

    CFHTLenS: Weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment

    Get PDF
    We present weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment. Using data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), we measure the weighted-average ratio of the aligned projected ellipticity components of galaxy matter haloes and their embedded galaxies, fhf_\mathrm{h}, split by galaxy type. We then compare our observations to measurements taken from the Millennium Simulation, assuming different models of galaxy-halo misalignment. Using the Millennium Simulation we verify that the statistical estimator used removes contamination from cosmic shear. We also detect an additional signal in the simulation, which we interpret as the impact of intrinsic shape-shear alignments between the lenses and their large-scale structure environment. These alignments are likely to have caused some of the previous observational constraints on fhf_\mathrm{h} to be biased high. From CFHTLenS we find fh=0.04±0.25f_\mathrm{h}=-0.04 \pm 0.25 for early-type galaxies, which is consistent with current models for the galaxy-halo misalignment predicting fh0.20f_\mathrm{h}\simeq 0.20. For late-type galaxies we measure fh=0.690.36+0.37f_\mathrm{h}=0.69_{-0.36}^{+0.37} from CFHTLenS. This can be compared to the simulated results which yield fh0.02f_\mathrm{h}\simeq 0.02 for misaligned late-type models.Comment: 21 pages, 3 tables, 9 figures. This replacement matches the version accepted for publication in MNRA

    CFHTLenS: Co-evolution of galaxies and their dark matter haloes

    Full text link
    Galaxy-galaxy weak lensing is a direct probe of the mean matter distribution around galaxies. The depth and sky coverage of the CFHT Legacy Survey yield statistically significant galaxy halo mass measurements over a much wider range of stellar masses (108.7510^{8.75} to 1011.3M10^{11.3} M_{\odot}) and redshifts (0.2<z<0.80.2 < z < 0.8) than previous weak lensing studies. At redshift z0.5z \sim 0.5, the stellar-to-halo mass ratio (SHMR) reaches a maximum of 4.0±0.24.0\pm0.2 percent as a function of halo mass at 1012.25M\sim 10^{12.25} M_{\odot}. We find, for the first time from weak lensing alone, evidence for significant evolution in the SHMR: the peak ratio falls as a function of cosmic time from 4.5±0.34.5 \pm 0.3 percent at z0.7z \sim 0.7 to 3.4±0.23.4 \pm 0.2 percent at z0.3z \sim 0.3, and shifts to lower stellar mass haloes. These evolutionary trends are dominated by red galaxies, and are consistent with a model in which the stellar mass above which star formation is quenched "downsizes" with cosmic time. In contrast, the SHMR of blue, star-forming galaxies is well-fit by a power law that does not evolve with time. This suggests that blue galaxies form stars at a rate that is balanced with their dark matter accretion in such a way that they evolve along the SHMR locus. The redshift dependence of the SHMR can be used to constrain the evolution of the galaxy population over cosmic time.Comment: 18 pages, MNRAS, in pres

    A Population of Dust-rich Quasars at z ~ 1.5

    Get PDF
    We report Herschel SPIRE (250, 350, and 500 μm) detections of 32 quasars with redshifts 0.5 ≤z < 3.6 from the Herschel Multi-tiered Extragalactic Survey (HerMES). These sources are from a MIPS 24 μm flux-limited sample of 326 quasars in the Lockman Hole Field. The extensive multi-wavelength data available in the field permit construction of the rest-frame spectral energy distributions (SEDs) from ultraviolet to the mid-infrared for all sources, and to the far-infrared (FIR) for the 32 objects. Most quasars with Herschel FIR detections show dust temperatures in the range of 25-60 K, with a mean of 34 K. The FIR luminosities range from 10^(11.3) to 10^(13.5) L_☉, qualifying most of their hosts as ultra- or hyper-luminous infrared galaxies. These FIR-detected quasars may represent a dust-rich population, but with lower redshifts and fainter luminosities than quasars observed at ~1 mm. However, their FIR properties cannot be predicted from shorter wavelengths (0.3-20 μm, rest frame), and the bolometric luminosities derived using the 5100 Å index may be underestimated for these FIR-detected quasars. Regardless of redshift, we observed a decline in the relative strength of FIR luminosities for quasars with higher near-infrared luminosities

    Corticomotor responses to attentionally demanding motor performance: a mini-review

    Get PDF
    Increased attentional demand has been shown to reduce motor performance, leading to increases in accidents, particularly in elderly populations. While these deficits have been well documented behaviorally, their cortical correlates are less well known. Increased attention has been shown to affect activity in prefrontal regions of the cortex. However there have been varying results within past research investigating corticomotor regions, mediating motor performance. This mini-review initially discusses past behavioral research, before moving to studies investigating corticomotor areas in response to changes in attention. Recent dual task studies have revealed a possible decline in the ability of older, but not younger, adults to activate inhibitory processes within the motor cortex, which may be correlated with poor motor performance, and thus accidents. A reduction in cortical inhibition may be caused by neurodegeneration within prefrontal regions of the cortex with age, rendering older adults less able to allocate attention to corticomotor regions
    corecore