1,243 research outputs found

    Antibiotic sorption onto microplastics in water: A critical review of the factors, mechanisms and implications.

    Get PDF
    Microplastics as vectors for contaminants in the environment is becoming a topic of public interest. Microplastics have been found to actively adsorb heavy metals, per-fluorinated alkyl substances (PFAS), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pharmaceuticals and personal care products (PPCPs) and polybrominated diethers (PBDs) onto their surface. Particular interest in microplastics capacity to adsorb antibiotics needs further attention due to the potential role this interaction plays on antibiotic resistance. Antibiotic sorption experiments have been documented in the literature, but the data has not yet been critically reviewed. This review aims to comprehensively assess the factors that affect antibiotic sorption onto microplastics. It is recognised that the physico- chemical properties of the polymers, the antibiotic chemical properties, and the properties of the solution all play a crucial role in the antibiotic sorption capacity of microplastics. Weathering of microplastics was found to increase the antibiotic sorption capacity by up to 171%. An increase in solution salinity was found to decrease the sorption of antibiotics onto microplastics, in some instances by 100%. pH also has a substantial effect on sorption capacity, illustrating the significance of electrostatic interactions on the sorption of antibiotics onto microplastics. The need for a uniform experimental design when testing antibiotic sorption is highlighted to remove inconsistencies in the data currently presented. Current literature examines the link between antibiotic sorption and antibiotic resistance, however, further studies are still required to fully understand this emerging global crisis

    Evaluating the generation of microplastics from an unlikely source: The unintentional consequence of the current plastic recycling process.

    Get PDF
    This study casts light on the potential of microplastic generation during plastic recycling - an unintended consequence of the process. To date, microplastics have been detected in the wastewater and sludge from plastic recycling facilities; however, generation pathways, factors and minimisation strategies are understudied. The purpose of this study is to identify the factors affecting microplastic generation, namely, plastic type and weathering conditions. The size reduction phase, which involved the mechanical shredding of the plastic waste material, was identified to be the predominate source of microplastic generation. Material type was found to significantly affect microplastic generation rates. Focussing on the microplastic particles in the size range of 0.212-1.18 mm, polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), and high-density polyethylene (HDPE) generated 28,600 ± 3961, 21,093 ± 2211, 18,987 ± 752 and 6807 ± 393 particles/kg of plastic material shredded, respectively. The significant variations between different plastic types were correlated (R2 = 0.88) to the hardness of the plastic. Environmental weathering was observed to significantly affect microplastic generation rates. Generation rates increased for PC, PET, PP, and HDPE by 185.05 %, 159.80 %, 123.70 % and 121.74 %, respectively, over a six-month environmental exposure period. The results in this study confirm production of large amounts of microplastics from the plastic recycling industry through its operational processes, which may be a significant source for microplastic pollution if measures to reduce their production and removal from wastewater and sludge are not considered

    Change in the chemical, mechanical and physical properties of plastics due to UVA degradation in different water matrices: A study on the recyclability of littered plastics.

    Get PDF
    To move towards a circular society, the recyclability potential of littered plastics should be explored to provide potential value for a product that is typically destined for landfill or incineration. This study aims to understand the changes in physical, mechanical, and chemical properties of four types of plastics (polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC) and polylactic acid (PLA) after simulated environmental degradation. Plastic samples were subjected to different water matrices (in an attempt to simulate terrestrial, ocean, and river environments) to understand the role the environment plays on plastic degradation. Significant physical, mechanical, and chemical changes were observed for the PET, PP and PLA samples. Flakes and cracks were noted during the scanning electron microscopy (SEM) analysis of PET, PP and PLA illustrating the surface degradation that had occurred. Colour scanning of the samples provided complementary information about their suitability for upcycling or downcycling. Both PET and PP had visual colour changes, making them unsuitable for upcycling purposes. PLA had a significant decrease in its tensile strength in all environmental conditions, alongside significant chemical and surface change as revealed by Fourier-transform infrared (FTIR) and SEM analysis, respectively. PC had little to no changes in its chemical, mechanical, and physical properties due to high resistance to solar (UVA) degradation in presence of salt and natural organic matter in the form of humic acid. Therefore, out of the four types of plastics tested, PC was the only plastic determined to have good upcycling potential if collected from the environment. However, PET and PP could still be recycled into lower value products (i.e., construction materials)

    Impact of bioplastic contamination on the mechanical recycling of conventional plastics.

    Full text link
    Quality assurance of a recycled product is currently one of the biggest issues that the plastic recycling industry faces. The purity of the input plastic waste stream has significant influence over the quality of the recycled product. This research evaluated the impact of polylactic acid (PLA) contamination within the input waste stream of high-density polyethylene (HDPE) recycling. The ultimate tensile strength was noted to reduce by 50% when PLA contamination was at 10%. An investigation into the effect that UVA radiation (simulating solar radiation) has on HDPE contaminated with PLA was also performed to determine the long-term effect of the bioplastic contamination. After UVA treatment, the ultimate tensile strength was reported to reduce by 51% when PLA contamination was only at 2.5%. A water contact angle analysis indicated the PLA contamination increased the hydrophilic nature of the HDPE sheets, potentially creating issues if the intended use of the recycled product was to store liquids. Microscopic analysis of the HDPE sheets contaminated with PLA showed deformations, ridges, cracks, and holes appear on the surface due to the immiscibility of the two polymers that was confirmed by FTIR analysis. Colour changes were visibly noted, with UVA exposure increasing the rate of colour change. Based on the findings in this study, PLA contamination of even 1% in a HDPE waste stream would significantly reduce the quality of the recycled product

    Antimicrobial Stewardship from Policy to Practice: Experiences from UK Antimicrobial Pharmacists

    Get PDF
    Antimicrobial stewardship in the UK has evolved dramatically in the last 15 years. Factors driving this include initial central funding for specialist pharmacists and mandatory reductions in healthcare-associated infections (particularly Clostridium difficile infection). More recently, the introduction of national stewardship guidelines, and an increased focus on stewardship as part of the UK five-year antimicrobial resistance strategy, have accelerated and embedded developments. Antimicrobial pharmacists have been instrumental in effecting changes at an organizational and national level. This article describes the evolution of the antimicrobial pharmacist role, its impact, the progress toward the actions listed in the five-year resistance strategy, and novel emerging areas in stewardship in the UK

    Tracheal Replacement Therapy with a Stem Cell-Seeded Graft: Lessons from Compassionate Use Application of a GMP-Compliant Tissue-Engineered Medicine

    Get PDF
    Tracheal replacement for the treatment of end-stage airway disease remains an elusive goal. The use of tissue-engineered tracheae in compassionate use cases suggests that such an approach is a viable option. Here, a stem cell-seeded, decellularized tissue-engineered tracheal graft was used on a compassionate basis for a girl with critical tracheal stenosis after conventional reconstructive techniques failed. The graft represents the first cell-seeded tracheal graft manufactured to full good manufacturing practice (GMP) standards. We report important preclinical and clinical data from the case, which ended in the death of the recipient. Early results were encouraging, but an acute event, hypothesized to be an intrathoracic bleed, caused sudden airway obstruction 3 weeks post-transplantation, resulting in her death. We detail the clinical events and identify areas of priority to improve future grafts. In particular, we advocate the use of stents during the first few months post-implantation. The negative outcome of this case highlights the inherent difficulties in clinical translation where preclinical in vivo models cannot replicate complex clinical scenarios that are encountered. The practical difficulties in delivering GMP grafts underscore the need to refine protocols for phase I clinical trials

    Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.

    Get PDF
    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology

    The effect of cataract on early stage glaucoma detection using spatial and temporal contrast sensitivity tests

    Get PDF
    Background: To investigate the effect of cataract on the ability of spatial and temporal contrast sensitivity tests used to detect early glaucoma. Methods: Twenty-seven glaucoma subjects with early cataract (mean age 60 ±10.2 years) which constituted the test group were recruited together with twenty-seven controls (cataract only) matched for age and cataract type from a primary eye care setting. Contrast sensitivity to flickering gratings at 20 Hz and stationary gratings with and without glare, were measured for 0.5, 1.5 and 3 cycles per degree (cpd) in central vision. Perimetry and structural measurements with the Heidelberg Retinal Tomograph (HRT) were also performed. Results: After considering the effect of cataract, contrast sensitivity to stationary gratings was reduced in the test group compared with controls with a statistically significant mean difference of 0.2 log units independent of spatial frequency. The flicker test showed a significant difference between test and control group at 1.5 and 3 cpd (p = 0.019 and p = 0.011 respectively). The percentage of glaucoma patients who could not see the temporal modulation was much higher compared with their cataract only counterparts. A significant correlation was found between the reduction of contrast sensitivity caused by glare and the Glaucoma Probability Score (GPS) as measured with the HRT (p<0.005). Conclusions: These findings indicate that both spatial and temporal contrast sensitivity tests are suitable for distinguishing between vision loss as a consequence of glaucoma and vision loss caused by cataract only. The correlation between glare factor and GPS suggests that there may be an increase in intraocular stray light in glaucoma

    Effect of embedding a sieving phase into the current plastic recycling process to capture microplastics

    Get PDF
    This study proposes a systematic change to the current plastic recycling process by introducing a sieving stage in between the shredding and washing units to capture the microplastics being unintentionally generated and released. The benefit of adding the sieving stage to minimise microplastics release to wash water was highlighted by comparing the findings with the case where microplastics are released to wash water and a conventional coagulation process is used to remove microplastics from water. Two coagulants, aluminium sulphate (Al2(SO4)3.18H2O) and aluminium chloride (AlCl3.6H2O), were used to remove polyethylene terephthalate (PET) and polycarbonate (PC) from water. The size of the microplastic particles played a significant role on the removal efficiency. The maximum removal efficiency of PET by AlCl3.6H2O was 99.2 % for the particles in 1.18–5 mm range, whereas the average removal efficiency over the whole tested size range of 0.15–5.00 mm was 76.1 % for the same plastic-coagulant combination. By contrast, the addition of a 5 mm sieve between the shredding and the washing units was found to capture 96–97 % of the microplastics generated. The findings of this innovative experiment demonstrate the beneficial impact that this strategy has on capturing microplastics prior to entering water matrix

    Sharing vocabularies: towards horizontal alignment of values-driven business functions

    Get PDF
    This paper highlights the emergence of different ‘vocabularies’ that describe various values-driven business functions within large organisations and argues for improved horizontal alignment between them. We investigate two established functions that have long-standing organisational histories: Ethics and Compliance (E&C) and Corporate Social Responsibility (CSR). By drawing upon research on organisational alignment, we explain both the need for and the potential benefit of greater alignment between these values-driven functions. We then examine the structural and socio-cultural dimensions of organisational systems through which E&C and CSR horizontal alignment can be coordinated to improve synergies, address tensions, and generate insight to inform future research and practice in the field of Business and Society. The paper concludes with research questions that can inform future scholarly research and a practical model to guide organizations’ efforts towards inter-functional, horizontal alignment of values-driven organizational practice
    corecore