679 research outputs found
Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments
Background and aims The high metal bioavailability and the poor conditions of mine soils yield a low plant biomass, limiting the application of phytoremediation techniques. A greenhouse experiment was performed to evaluate the effects of organic amendments on metal stabilization and the potential of Brassica juncea L. for phytostabilization in mine soils. Methods Plants were grown in pots filled with soils collected from two mine sites located in Central Spain mixed with 0, 30 and 60 tha?1 of pine bark compost and horse- and sheep-manure compost. Plant biomass and metal concentrations in roots and shoots were measured. Metal bioavailability was assessed using a rhizosphere-based method (rhizo), which consists of a mixture of low-molecular-weight organic acids to simulate root exudates. Results Manure reduced metal concentrations in shoots (10?50 % reduction of Cu and 40?80 % of Zn in comparison with non-amended soils), bioconcentration factor (10?50 % of Cu and 40?80 % of Zn) and metal bioavailability in soil (40?50 % of Cu and 10?30 % of Zn) due to the high pH and the contribution of organic matter. Manure improved soil fertility and was also able to increase plant biomass (5?20 times in shoots and 3?30 times in roots), which resulted in a greater amount of metals removed from soil and accumulated in roots (increase of 2?7 times of Cu and Zn). Plants grown in pine bark treatments and in non-amended soils showed a limited biomass and high metal concentrations in shoots. Conclusions The addition of manure could be effective for the stabilization of metals and for enhancing the phytostabilization ability of B. juncea in mine soils. In this study, this species resulted to be a potential candidate for phytostabilization in combination with manure, differing from previous results, in which B. juncea had been recognized as a phytoextraction plant
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
Nutrient Release, Plant Nutrition, and Potassium Leaching from Polymer-Coated Fertilizer
ABSTRACT The increase in food consumption and limitations in food production areas requires improved fertilizer efficiency. Slow- or controlled-release fertilizers are an alternative for synchronizing nutrient availability with the plant demands, reducing losses to the environment. The aim of this study was to evaluate the efficacy of polymer-coated KCl compared with conventional KCl. The products were incubated in soil under controlled conditions to evaluate the time required for nutrient release. A greenhouse experiment was performed with corn plants in pots with loamy sand- or clay-textured soil types to evaluate plant nutrition and losses due to leaching. The K application rates were 0, 18, 36, and 54 mg dm-3. The pots were irrigated, and the percolated liquid was collected. The plants were harvested 30 days after sowing to quantify dry matter (DM) and its K content. In the incubation study, the K release from the coated fertilizer was found to be 42 % over 154 days. The data were fit to a linear function from which a period of 315 days was estimated as required for the release of 75 % of the nutrient. Meanwhile, conventional KCl releases 85 % of the K nutrient in the first 48h. In the cultivation of plants in pots, the coating reduced K losses due to leaching in the loamy sand soil; however, only the application rate of 54 mg dm-3 promoted DM production equivalent to conventional KCl. It is possible that the need for K in the early stages of corn development was not met by a coated KCl
Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion Systems
The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates—effector proteins—are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal
What is the value and impact of quality and safety teams? A scoping review
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to conduct a scoping review of the literature about the establishment and impact of quality and safety team initiatives in acute care.</p> <p>Methods</p> <p>Studies were identified through electronic searches of Medline, Embase, CINAHL, PsycINFO, ABI Inform, Cochrane databases. Grey literature and bibliographies were also searched. Qualitative or quantitative studies that occurred in acute care, describing how quality and safety teams were established or implemented, the impact of teams, or the barriers and/or facilitators of teams were included. Two reviewers independently extracted data on study design, sample, interventions, and outcomes. Quality assessment of full text articles was done independently by two reviewers. Studies were categorized according to dimensions of quality.</p> <p>Results</p> <p>Of 6,674 articles identified, 99 were included in the study. The heterogeneity of studies and results reported precluded quantitative data analyses. Findings revealed limited information about attributes of successful and unsuccessful team initiatives, barriers and facilitators to team initiatives, unique or combined contribution of selected interventions, or how to effectively establish these teams.</p> <p>Conclusions</p> <p>Not unlike systematic reviews of quality improvement collaboratives, this broad review revealed that while teams reported a number of positive results, there are many methodological issues. This study is unique in utilizing traditional quality assessment and more novel methods of quality assessment and reporting of results (SQUIRE) to appraise studies. Rigorous design, evaluation, and reporting of quality and safety team initiatives are required.</p
Observation of the Decay B=> J/psi eta K and Search for X(3872)=> J/psi eta
We report the observation of the meson decay
and evidence for the decay , using {90} million
events collected at the \ensuremath{\Upsilon{(4S)}}\xspace resonance
with the detector at the PEP-II asymmetric-energy storage
ring. We obtain branching fractions of )= and
)=. We search for the new narrow mass state, the
X(3872), recently reported by the Belle Collaboration, in the decay B^\pm\to
X(3872)K^\pm, X(3872)\to \jpsi \eta and determine an upper limit of
(B^\pm \to X(3872) K^\pm \to \jpsi \eta K^\pm)
at 90% C.L.Comment: 7 pages and two figures, submitted to Phys. Rev. Lett
Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV
We report a measurement of the ratio of the bottom quark production cross
section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom
quarks with transverse momenta greater than 10.75 GeV identified through their
semileptonic decays and long lifetimes. The measured ratio
sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with
next-to-leading order (NLO) quantum chromodynamics (QCD)
Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis
Authors’ Reply to Whitlock: Perispinal Etanercept for Post-Stroke Neurological and Cognitive Dysfunction: Scientific Rationale and Current Evidence
- …
