1,114 research outputs found

    "Even if the test result is negative, they should be able to tell us what is wrong with us": a qualitative study of patient expectations of rapid diagnostic tests for malaria.

    Get PDF
    BACKGROUND: The debate on rapid diagnostic tests (RDTs) for malaria has begun to shift from whether RDTs should be used, to how and under what circumstances their use can be optimized. This has increased the need for a better understanding of the complexities surrounding the role of RDTs in appropriate treatment of fever. Studies have focused on clinician practices, but few have sought to understand patient perspectives, beyond notions of acceptability. METHODS: This qualitative study aimed to explore patient and caregiver perceptions and experiences of RDTs following a trial to assess the introduction of the tests into routine clinical care at four health facilities in one district in Ghana. Six focus group discussions and one in-depth interview were carried out with those who had received an RDT with a negative test result. RESULTS: Patients had high expectations of RDTs. They welcomed the tests as aiding clinical diagnoses and as tools that could communicate their problem better than they could, verbally. However, respondents also believed the tests could identify any cause of illness, beyond malaria. Experiences of patients suggested that RDTs were adopted into an existing system where patients are both physically and intellectually removed from diagnostic processes and where clinicians retain authority that supersedes tests and their results. In this situation, patients did not feel able to articulate a demand for test-driven diagnosis. CONCLUSIONS: Improvements in communication between the health worker and patient, particularly to explain the capabilities of the test and management of RDT negative cases, may both manage patient expectations and promote patient demand for test-driven diagnoses

    A twenty-year survey of dermatophytoses in Braga, Portugal

    Get PDF
    Modifications in social habits together with the increase of emigration have contributed not only to increased dermatophytoses but also to an altered etiology. During the last few years, Braga has suffered a radical change from a rural to a cosmopolitan life-style

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury

    Get PDF
    In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and controls) were compared by multivariate data analysis, thus allowing us to decipher both common and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers were found in the three mechanisms, mainly showing altered levels of metabolites associated with glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led to impaired fatty acids β-oxidation and a subsequent increase in triacylglycerides synthesis. The characteristic metabolomic profiles were used to develop a predictive model aimed not only to discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity mechanism(s)

    Autologous microsurgical breast reconstruction and coronary artery bypass grafting: an anatomical study and clinical implications

    Get PDF
    OBJECTIVE: To identify possible avenues of sparing the internal mammary artery (IMA) for coronary artery bypass grafting (CABG) in women undergoing autologous breast reconstruction with deep inferior epigastric artery perforator (DIEP) flaps. BACKGROUND: Optimal autologous reconstruction of the breast and coronary artery bypass grafting (CABG) are often mutually exclusive as they both require utilisation of the IMA as the preferred arterial conduit. Given the prevalence of both breast cancer and coronary artery disease, this is an important issue for women's health as women with DIEP flap reconstructions and women at increased risk of developing coronary artery disease are potentially restricted from receiving this reconstructive option should the other condition arise. METHODS: The largest clinical and cadaveric anatomical study (n=315) to date was performed, investigating four solutions to this predicament by correlating the precise requirements of breast reconstruction and CABG against the anatomical features of the in situ IMAs. This information was supplemented by a thorough literature review. RESULTS: Minimum lengths of the left and right IMA needed for grafting to the left-anterior descending artery are 160.08 and 177.80 mm, respectively. Based on anatomical findings, the suitable options for anastomosis to each intercostals space are offered. In addition, 87-91% of patients have IMA perforator vessels to which DIEP flaps can be anastomosed in the first- and second-intercostal spaces. CONCLUSION: We outline five methods of preserving the IMA for future CABG: (1) lowering the level of DIEP flaps to the fourth- and fifth-intercostals spaces, (2) using the DIEP pedicle as an intermediary for CABG, (3) using IMA perforators to spare the IMA proper, (4) using and end-to-side anastomosis between the DIEP pedicle and IMA and (5) anastomosis of DIEP flaps using retrograde flow from the distal IMA. With careful patient selection, we hypothesize using the IMA for autologous breast reconstruction need not be an absolute contraindication for future CABG

    Meanings given to algebraic symbolism in problem posing

    Get PDF
    Some errors in the learning of algebra suggest students have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing in order to analyze the students’ capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process depending on the characteristics of the algebraic statements given. We designed a written questionnaire composed of eight closed algebraic statements expressed symbolically, which was administered to 55 students who had finished their compulsory education and that had some previous experience in problem posing. In our analysis of the data, we examine both syntactic and semantic structures of the problem posed. We note that in most cases students posed problems with syntactic structures different to those given. They did not include computations within variables, and changed the kinds of relationships connecting variables. Students easily posed problems for statements with additive structures. Other differences in the type of problems posed depend on the characteristics of the given statements

    Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior

    Get PDF
    Two genome duplications early in the vertebrate lineage expanded gene families, including GluN2 subunits of the NMDA receptor. Diversification between the four mammalian GluN2 proteins occurred primarily at their intracellular C−terminal domains (CTDs). To identify shared ancestral functions and diversified subunit−specific functions, we exchanged the exons encoding the GluN2A (also known as Grin2a) and GluN2B (also known as Grin2b) CTDs in two knock−in mice and analyzed the mice's biochemistry, synaptic physiology, and multiple learned and innate behaviors. The eight behaviors were genetically separated into four groups, including one group comprising three types of learning linked to conserved GluN2A/B regions. In contrast, the remaining five behaviors exhibited subunit−specific regulation. GluN2A/B CTD diversification conferred differential binding to cytoplasmic MAGUK proteins and differential forms of long−term potentiation. These data indicate that vertebrate behavior and synaptic signaling acquired increased complexity from the duplication and diversification of ancestral GluN2 gene

    The immunology and genetics of resistance of sheep to Teladorsagia circumcincta

    Get PDF
    Teladorsagia circumcincta is one of the most economically important gastrointestinal nematode parasites of sheep in cool temperate regions, to which sheep show genetically-varying resistance to infection. This is a very common parasite and viable sheep production requires the extensive use of anthelmintic drugs. However, the emergence of drug-resistant parasites has stimulated the search for alternative control strategies to curb production losses. Lambs become infected soon after weaning and begin to control parasite burden within 8-10 weeks of continual infection. This control is an acquired characteristic mediated by the development of parasite-specific antibodies. This paper describes the immunology associated with resistance and susceptibility, focussing on differential T cell activation that regulates the production of specific effector mechanisms. It continues by summarizing the methods used to identify genes that could be exploited as molecular markers of selection for resistance. In particular it focusses on the link between understanding the molecular immunology of infection and the identification of candidate genes for selection
    corecore