205 research outputs found
Nano-mechanical properties of Fe-Mn-Al-C lightweight steels
High Al Low-density steels could have a transformative effect on the light-weighting of steel structures for transportation and achieving the desired properties with the minimum amount of Ni is of great interest from an economic perspective. In this study, the mechanical properties of two duplex low-density steels, Fe-15Mn-10Al-0.8C-5Ni and Fe-15Mn-10Al-0.8C (wt.%) were investigated through nano-indentation and simulation through utilization of ab initio formalisms in Density Functional Theory (DFT) in order to establish the hardness resulting from two critical structural features (ߢ-carbides and B2 intermetallic) as a function of annealing temperature (500 − 1050 ℃) and the addition of Ni. In the Ni-free sample, the calculated elastic properties of kappa-carbides were compared with those of the B2 intermetallic Fe3Al − L12, and the role of Mn in the kappa structure and its elastic properties were studied. The Ni-containing samples were found to have a higher hardness due to the B2 phase composition being NiAl rather than FeAl, with Ni-Al bonds reported to be stronger than the Fe-Al bonds. In both samples, at temperatures of 900 ℃ and above, the ferrite phase contained nano-sized discs of B2 phase, wherein the Ni-containing samples exhibited higher hardness, attributed again to the stronger Ni-Al bonds in the B2 phase. At 700 ℃ and below, the nano-sized B2 discs were replaced by micrometre sized needles of kappa in the Ni-free sample resulting in a lowering of the hardness. In the Ni-containing sample, the entire alpha phase was replaced by B2 stringers, which had a lower hardness than the Ni-Al nano-discs due to a lower Ni content in B2 stringer bands formed at 700 ℃ and below. In addition, the hardness of needle-like kappa-carbides formed in alpha phase was found to be a function of Mn content. Although it was impossible to measure the hardness of cuboid kappa particles in gamma phase because of their nano-size, the hardness value of composite phases, e.g. gamma + kappa was measured and reported. All the hardness values were compared and rationalized by bonding energy between different atoms
The AFLOW Fleet for Materials Discovery
The traditional paradigm for materials discovery has been recently expanded
to incorporate substantial data driven research. With the intent to accelerate
the development and the deployment of new technologies, the AFLOW Fleet for
computational materials design automates high-throughput first principles
calculations, and provides tools for data verification and dissemination for a
broad community of users. AFLOW incorporates different computational modules to
robustly determine thermodynamic stability, electronic band structures,
vibrational dispersions, thermo-mechanical properties and more. The AFLOW data
repository is publicly accessible online at aflow.org, with more than 1.7
million materials entries and a panoply of queryable computed properties. Tools
to programmatically search and process the data, as well as to perform online
machine learning predictions, are also available.Comment: 14 pages, 8 figure
Dynamic response of large tilt-angle flexoelectro-optic liquid crystal modulators
This is the underlying data from the publication: Julian A. J. Fells, Chris Welch, Wing C. Yip, Steve J. Elston, Martin J. Booth, Georg H. Mehl, Timothy D. Wilkinson, and Stephen M. Morris, "Dynamic response of large tilt-angle flexoelectro-opticliquid crystal modulators," Opt. Express 27 (11), 15184-15193, 2019. https://doi.org/10.1364/OE.27.01518
Neuroscience and education: prime time to build the bridge
As neuroscience gains social traction and entices media attention, the notion that education has much to benefit from brain
research becomes increasingly popular. However, it has been argued that the fundamental bridge toward education is cognitive
psychology, not neuroscience. We discuss four specific cases in which neuroscience synergizes with other disciplines to serve
education, ranging from very general physiological aspects of human learning such as nutrition, exercise and sleep, to brain
architectures that shape the way we acquire language and reading, and neuroscience tools that increasingly allow the early
detection of cognitive deficits, especially in preverbal infants. Neuroscience methods, tools and theoretical frameworks have
broadened our understanding of the mind in a way that is highly relevant to educational practice. Although the bridge’s cement is
still fresh, we argue why it is prime time to march over it
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Robust measurement of flexoelectro-optic switching with different surface alignments
The alignment of chiral nematic liquid crystals in the so-called uniform lying helix geometry allows for the observation and exploitation of the flexoelectro-optic effect. However, high-quality uniform lying helix alignment is difficult to achieve reliably, and this can potentially impact the accuracy of the measurements made on the flexoelectro-optic switching behaviour. Here, we show that, using an appropriate method, it is possible to make measurements of the flexo-electric coefficients that are not substantially influenced by the alignment quality
Use of biological based therapy in patients with cardiovascular diseases in a university-hospital in New York City
BACKGROUND: The use of complementary and alternative products including Biological Based Therapy (BBT) has increased among patients with various medical illnesses and conditions. The studies assessing the prevalence of BBT use among patients with cardiovascular diseases are limited. Therefore, an evaluation of BBT in this patient population would be beneficial. This was a survey designed to determine the effects of demographics on the use of Biological Based Therapy (BBT) in patients with cardiovascular diseases. The objective of this study was to determine the effect of the education level on the use of BBT in cardiovascular patients. This survey also assessed the perceptions of users regarding the safety/efficacy of BBT, types of BBT used and potential BBT-drug interactions. METHOD: The survey instrument was designed to assess the findings. Patients were interviewed from February 2001 to December 2002. 198 inpatients with cardiovascular diseases (94 BBT users and 104 non-users) in a university hospital were included in the study. RESULTS: Users had a significantly higher level of education than non-users (college graduate: 28 [30%] versus 12 [12%], p = 0.003). Top 10 BBT products used were vitamin E [41(43.6%)], vitamin C [30(31.9%)], multivitamins [24(25.5%)], calcium [19(20.2%)], vitamin B complex [17(18.1%)], fish oil [12(12.8%)], coenzyme Q10 [11(11.7%)], glucosamine [10(10.6%)], magnesium [8(8.5%)] and vitamin D [6(6.4%)]. Sixty percent of users' physicians knew of the BBT use. Compared to non-users, users believed BBT to be safer (p < 0.001) and more effective (p < 0.001) than prescription drugs. Forty-two potential drug-BBT interactions were identified. CONCLUSION: Incidence of use of BBT in cardiovascular patients is high (47.5%), as is the risk of potential drug interaction. Health care providers need to monitor BBT use in patients with cardiovascular diseases
The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the ApcMin/+ Mouse
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process
The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation
Background
Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains.
Methodology/Principal Findings
We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation.
Conclusions/Significance
Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs
Is complementary and alternative medicine (CAM) cost-effective? a systematic review
BACKGROUND: Out-of-pocket expenditures of over $34 billion per year in the US are an apparent testament to a widely held belief that complementary and alternative medicine (CAM) therapies have benefits that outweigh their costs. However, regardless of public opinion, there is often little more than anecdotal evidence on the health and economic implications of CAM therapies. The objectives of this study are to present an overview of economic evaluation and to expand upon a previous review to examine the current scope and quality of CAM economic evaluations. METHODS: The data sources used were Medline, AMED, Alt-HealthWatch, and the Complementary and Alternative Medicine Citation Index; January 1999 to October 2004. Papers that reported original data on specific CAM therapies from any form of standard economic analysis were included. Full economic evaluations were subjected to two types of quality review. The first was a 35-item checklist for reporting quality, and the second was a set of four criteria for study quality (randomization, prospective collection of economic data, comparison to usual care, and no blinding). RESULTS: A total of 56 economic evaluations (39 full evaluations) of CAM were found covering a range of therapies applied to a variety of conditions. The reporting quality of the full evaluations was poor for certain items, but was comparable to the quality found by systematic reviews of economic evaluations in conventional medicine. Regarding study quality, 14 (36%) studies were found to meet all four criteria. These exemplary studies indicate CAM therapies that may be considered cost-effective compared to usual care for various conditions: acupuncture for migraine, manual therapy for neck pain, spa therapy for Parkinson's, self-administered stress management for cancer patients undergoing chemotherapy, pre- and post-operative oral nutritional supplementation for lower gastrointestinal tract surgery, biofeedback for patients with "functional" disorders (eg, irritable bowel syndrome), and guided imagery, relaxation therapy, and potassium-rich diet for cardiac patients. CONCLUSION: Whereas the number and quality of economic evaluations of CAM have increased in recent years and more CAM therapies have been shown to be of good value, the majority of CAM therapies still remain to be evaluated
- …
