42 research outputs found

    A cross-sectional survey investigating women's information sources, behaviour, expectations, knowledge and level of satisfaction on advice received about diet and supplements before and during pregnancy

    Get PDF
    Background The reported long-term effects of poor maternal nutrition and uptake of recommended supplements before and during pregnancy was the impetus behind this study. Our objectives were to investigate and understand women’s expectations, knowledge, behaviour and information sources used regarding the use of nutrition and vitamin supplements before and during pregnancy. Methods A cross-sectional survey using a self-administered questionnaire was undertaken. A purposive sampling technique was used. Women attending the antenatal clinic at Croydon University Hospital during 2015 were invited to take part in the study. The data was analysed using descriptive statistics, paired sample T-tests and Chi-squared tests, with the level of significance set at 5% (p < 0.05). Results A total of 133 pregnant women completed the survey. Analysis of the results showed that women are currently using electronic resources (33%, n = 42) rather than healthcare professionals (19%, n = 25) as an information source before pregnancy. Women who sourced information through the internet were significantly more likely to take folic acid (p = 0.006) and vitamin D (p = 0.004) before pregnancy. Women preferred to receive information from the antenatal clinic (62%, n = 83), internet (46%, n = 61) and from mobile applications (27%, n = 36). Although women believed they had sufficient knowledge (60%, n = 80) and had received adequate advice (53%, n = 70) concerning the correct supplements to take, this was not demonstrated in their behaviour, with only a small number of women (37%, n = 49) taking a folic acid supplement before pregnancy. Women mistakenly perceived the timing of supplement advice as correct, with only a small number of women (18%, n = 23) considering the advice on supplements as too late. Conclusions Despite the small sample size, this study demonstrated that women did not receive timely and/or accurate advice to enable them to take the recommended supplements at the optimal time. Women had the misconception that they understood the correct use of pregnancy supplements. This misunderstanding may be prevented by providing women intending to become pregnant with a structured, approved electronic source of information that improves their supplements uptake

    Population and Environmental Correlates of Maize Yields in Mesoamerica: a Test of Boserup’s Hypothesis in the Milpa

    Full text link
    Using a sample of 40 sources reporting milpa and mucuna-intercropped maize yields in Mesoamerica, we test Boserup’s (1965) prediction that fallow is reduced as a result of growing population density. We further examine direct and indirect effects of population density on yield. We find only mixed support for Boserupian intensification. Fallow periods decrease slightly with increasing population density in this sample, but the relationship is weak. Controlling for other covariates, fallow-unadjusted maize yields first rise then fall with population density. Fallow-adjusted maize yields peak at 390 kg/ha/yr for low population densities (8 persons / km2) and decline to around 280 kg/ha/yr for the highest population densities observed in our dataset. Fallow practices do not appear to mediate the relationship between population density and yield. The multi-level modeling methods we adopt allow for data clustering, accurate estimates of group-level variation, and they generate conditional predictions, all features essential to the comparative study of prehistoric and contemporary agricultural yields

    Advances in the Household Archaeology of Highland Mesoamerica

    Full text link

    The Impact of Maternal Obesity on Human Milk Macronutrient Composition: A Systematic Review and Meta-Analysis

    Get PDF
    Maternal obesity has been associated with changes in the macronutrient concentration of human milk (HM), which have the potential to promote weight gain and increase the long-term risk of obesity in the infant. This article aimed to provide a synthesis of studies evaluating the effects of maternal overweight and obesity on the concentrations of macronutrients in HM. EMBASE, MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, and ProQuest databases were searched for relevant articles. Two authors conducted screening, data extraction, and quality assessment independently. A total of 31 studies (5078 lactating women) were included in the qualitative synthesis and nine studies (872 lactating women) in the quantitative synthesis. Overall, maternal body mass index (BMI) and adiposity measurements were associated with higher HM fat and lactose concentrations at different stages of lactation, whereas protein concentration in HM did not appear to differ between overweight and/or obese and normal weight women. However, given the considerable variability in the results between studies and low quality of many of the included studies, further research is needed to establish the impact of maternal overweight and obesity on HM composition. This is particularly relevant considering potential implications of higher HM fat concentration on both growth and fat deposition during the first few months of infancy and long-term risk of obesity

    Effect of a reduced fat and sugar maternal dietary intervention during lactation on the infant gut microbiome

    No full text
    OBJECTIVE: A growing body of literature has shown that maternal diet during pregnancy is associated with infant gut bacterial composition. However, whether maternal diet during lactation affects the exclusively breastfed infant gut microbiome remains understudied. This study sets out to determine whether a two-week of a reduced fat and sugar maternal dietary intervention during lactation is associated with changes in the infant gut microbiome composition and function. DESIGN: Stool samples were collected from four female and six male (n = 10) infants immediately before and after the intervention. Maternal baseline diet from healthy mothers aged 22-37 was assessed using 24-h dietary recall. During the 2-week dietary intervention, mothers were provided with meals and their dietary intake was calculated using FoodWorks 10 Software. Shotgun metagenomic sequencing was used to characterize the infant gut microbiome composition and function. RESULTS: In all but one participant, maternal fat and sugar intake during the intervention were significantly lower than at baseline. The functional capacity of the infant gut microbiome was significantly altered by the intervention, with increased levels of genes associated with 28 bacterial metabolic pathways involved in biosynthesis of vitamins (p = 0.003), amino acids (p = 0.005), carbohydrates (p = 0.01), and fatty acids and lipids (p = 0.01). Although the dietary intervention did not affect the bacterial composition of the infant gut microbiome, relative difference in maternal fiber intake was positively associated with increased abundance of genes involved in biosynthesis of storage compounds (p = 0.016), such as cyanophycin. Relative difference in maternal protein intake was negatively associated with Veillonella parvula (p = 0.006), while positively associated with Klebsiella michiganensis (p = 0.047). Relative difference in maternal sugar intake was positively associated with Lactobacillus paracasei (p = 0.022). Relative difference in maternal fat intake was positively associated with genes involved in the biosynthesis of storage compounds (p = 0.015), fatty acid and lipid (p = 0.039), and metabolic regulator (p = 0.038) metabolic pathways. CONCLUSION: This pilot study demonstrates that a short-term maternal dietary intervention during lactation can significantly alter the functional potential, but not bacterial taxonomy, of the breastfed infant gut microbiome. While the overall diet itself was not able to change the composition of the infant gut microbiome, changes in intakes of maternal protein and sugar during lactation were correlated with changes in the relative abundances of certain bacterial species.Clinical trial registration: Australian New Zealand Clinical Trials Registry (ACTRN12619000606189)

    Maternal dietary intervention during lactation impacts the maternal faecal and human milk microbiota.

    No full text
    AIMS: To determine the effect of a two-week reduced fat and sugar and increased fibre maternal dietary intervention on the maternal faecal and human milk (HM) microbiomes. METHODS AND RESULTS: Faecal swabs and HM samples were collected from mothers (n = 11) immediately pre-intervention, immediately post-intervention, and 4 and 8 weeks post-intervention, and were analysed using full-length 16S rRNA gene sequencing. Maternal macronutrient intake was assessed at baseline and during the intervention. Maternal fat and sugar intake during the intervention were significantly lower than pre-intervention (P = <0.001, 0.005, respectively). Significant changes in the bacterial composition of maternal faeces were detected after the dietary intervention, with decreases in the relative abundance of Bacteroides caccae (P = <0.001) and increases in the relative abundance of Faecalibacillus intestinalis (P = 0.006). In HM, the diet resulted in a significant increase in Cutibacterium acnes (P = 0.001) and a decrease in Haemophilus parainfluenzae (P = <0.001). The effect of the diet continued after the intervention, with faecal swabs and HM samples taken 4 and 8 weeks after the diet showing significant differences compared to baseline. CONCLUSION: This pilot study demonstrates that short-term changes in maternal diet during lactation can alter the bacterial composition of the maternal faeces and HM
    corecore