11 research outputs found
Discovery of Nuclear-Encoded Genes for the Neurotoxin Saxitoxin in Dinoflagellates
Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide.
Ingestion of vector species can lead to paralytic shellfish poisoning, a severe
human illness that may lead to paralysis and death. In freshwaters, the toxin is
produced by prokaryotic cyanobacteria; in marine waters, it is associated with
eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is
not produced by dinoflagellates themselves, but by co-cultured bacteria. Here,
we show that genes required for saxitoxin synthesis are encoded in the nuclear
genomes of dinoflagellates. We sequenced >1.2×106 mRNA
transcripts from the two saxitoxin-producing dinoflagellate strains
Alexandrium fundyense CCMP1719 and A.
minutum CCMP113 using high-throughput sequencing technology. In
addition, we used in silico transcriptome analyses, RACE, qPCR
and conventional PCR coupled with Sanger sequencing. These approaches
successfully identified genes required for saxitoxin-synthesis in the two
transcriptomes. We focused on sxtA, the unique starting gene of
saxitoxin synthesis, and show that the dinoflagellate transcripts of
sxtA have the same domain structure as the cyanobacterial
sxtA genes. But, in contrast to the bacterial homologs, the
dinoflagellate transcripts are monocistronic, have a higher GC content, occur in
multiple copies, contain typical dinoflagellate spliced-leader sequences and
eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and
non-producing dinoflagellate strains from six different genera for the presence
of genomic sxtA homologs. Our results show very good agreement
between the presence of sxtA and saxitoxin-synthesis, except in
three strains of A. tamarense, for which we amplified
sxtA, but did not detect the toxin. Our work opens for
possibilities to develop molecular tools to detect saxitoxin-producing
dinoflagellates in the environment
Rigorous Analysis of Available Data from Cerro Prieto and Las Tres Virgenes Geothermal Fields with Calculations for Expanded Electricity Generation
Effectiveness of Probiotic Phaeobacter Bacteria Grown in Biofilters Against Vibrio anguillarum Infections in the Rearing of Turbot (Psetta maxima) Larvae
Recent Mn-Ag deposits in coastal hydrothermal springs in the Baja California Peninsula, Mexico
Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds
Molecular Analysis of Bacterial Communities and Detection of Potential Pathogens in a Recirculating Aquaculture System for Scophthalmus maximus and Solea senegalensis
The Family Rhodobacteraceae
The family Rhodobacteraceae can be considered a paradigm of modern taxonomy of prokaryotes. Taking into account the number of species and genera that conforms the family, together with the knowledge about their abundance and vast global distribution, it surprises that most of them have been described relatively recent to our days. Two notable exceptions are Rhodonostoc capsulatum (Molisch, Die purpurbakterien nach neuen untersuchungen, vols i–vii. G. Fischer, Jena, pp 1–95, 1907) and Micrococcus denitrificans Beijerinck and Minkman (Zentbl Bakteriol, Parasitenkd, Infektionskr Hyg. Abt II 25:30–63, 1910), early basonyms of Rhodobacter capsulatus and Paracoccus denitrificans, respectively. The fact that so many descriptions within this family are recent means that some studies have been concomitant and pose a challenge not only for pure taxonomic studies but also for interpreting other studies in which a rapidly evolving nomenclature had to be used anyway. The metabolic and ecological diversity of the group adds further complexity. In spite of all these difficulties, the picture is far from being a chaos and it can be considered an exciting and important bacterial group to study.
Rhodobacteraceae are, fundamentally, aquatic bacteria that frequently thrive in marine environments. They comprise mainly aerobic photo- and chemoheterotrophs but also purple non-sulfur bacteria which perform photosynthesis in anaerobic environments. They are deeply involved in sulfur and carbon biogeochemical cycling and symbiosis with aquatic micro- and macroorganisms.
One hundred genera are currently recognized as members of the family although the Stappia group, Ahrensia, Agaricicola, and Rhodothalassium do not belong, phylogenetically, to the family. The 90 other genera are distributed in 5 phylogenetic groups (the Rhodobacter, the Paracoccus, the Rhodovulum, the Amaricoccus, and the Roseobacter clades) that might be considered a family on its own
