1,481 research outputs found
The Stokes Phenomenon and Quantum Tunneling for de Sitter Radiation in Nonstationary Coordinates
We study quantum tunneling for the de Sitter radiation in the planar
coordinates and global coordinates, which are nonstationary coordinates and
describe the expanding geometry. Using the phase-integral approximation for the
Hamilton-Jacobi action in the complex plane of time, we obtain the
particle-production rate in both coordinates and derive the additional
sinusoidal factor depending on the dimensionality of spacetime and the quantum
number for spherical harmonics in the global coordinates. This approach
resolves the factor of two problem in the tunneling method.Comment: LaTex 10 pages, no figur
Ecological homogenization of urban USA
A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multidisciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis-St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales. © The Ecological Society of America
Convergent Surface Water Distributions in U.S. Cities
Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and distribution: in other words, cities will gain or lose water such that they become more similar to each other than are their surrounding natural landscapes. Using a database of more than 1 million water bodies and 1 million km of streams, we compared the surface water of 100 US cities with their surrounding undeveloped land. We evaluated differences in areal (A WB) and numeric densities (N WB) of water bodies (lakes, wetlands, and so on), the morphological characteristics of water bodies (size), and the density (D C) of surface flow channels (that is, streams and rivers). The variance of urban A WB, N WB, and D C across the 100 MSAs decreased, by 89, 25, and 71%, respectively, compared to undeveloped land. These data show that many cities are surface water poor relative to undeveloped land; however, in drier landscapes urbanization increases the occurrence of surface water. This convergence pattern strengthened with development intensity, such that high intensity urban development had an areal water body density 98% less than undeveloped lands. Urbanization appears to drive the convergence of hydrological features across the US, such that surface water distributions of cities are more similar to each other than to their surrounding landscapes. © 2014 The Author(s)
Metric-based vs peer-reviewed evaluation of a research output: Lesson learnt from UK’s national research assessment exercise
Purpose
There is a general inquisition regarding the monetary value of a research output, as a substantial amount of funding in modern academia is essentially awarded to good research presented in the form of journal articles, conferences papers, performances, compositions, exhibitions, books and book chapters etc., which, eventually leads to another question if the value varies across different disciplines. Answers to these questions will not only assist academics and researchers, but will also help higher education institutions (HEIs) make informed decisions in their administrative and research policies.
Design and methodology
To examine both the questions, we applied the United Kingdom’s recently concluded national research assessment exercise known as the Research Excellence Framework (REF) 2014 as a case study. All the data for this study is sourced from the openly available publications which arose from the digital repositories of REF’s results and HEFCE’s funding allocations.
Findings
A world leading output earns between £7504 and £14,639 per year within the REF cycle, whereas an internationally excellent output earns between £1876 and £3659, varying according to their area of research. Secondly, an investigation into the impact rating of 25315 journal articles submitted in five areas of research by UK HEIs and their awarded funding revealed a linear relationship between the percentage of quartile-one journal publications and percentage of 4* outputs in Clinical Medicine, Physics and Psychology/Psychiatry/Neuroscience UoAs, and no relationship was found in the Classics and Anthropology/Development Studies UoAs, due to the fact that most publications in the latter two disciplines are not journal articles.
Practical implications
The findings provide an indication of the monetary value of a research output, from the perspectives of government funding for research, and also what makes a good output, i.e. whether a relationship exists between good quality output and the source of its publication. The findings may also influence future REF submission strategies in HEIs and ascertain that the impact rating of the journals is not necessarily a reflection of the quality of research in every discipline, and this may have a significant influence on the future of scholarly communications in general.
Originality
According to the author’s knowledge, this is the first time an investigation has estimated the monetary value of a good research output
Autonomous transport and splitting of a droplet on an open surface
Pumpless transport of droplets on open surfaces has gained significant attention because of its applications starting from vapor condensation to Lab-on-a-Chip systems. Mixing two droplets on open surfaces can be carried out quickly by using wettability patterning. However, it is quite challenging to split a droplet in the absence of external stimuli because of the interfacial energy of the droplet. Here, we demonstrate a standalone power-free technique for transport and splitting of droplets on open surfaces using continuous wettability gradients. A droplet moves continuously from a low to a high wettability region on the wettability-gradient surface. A Y-shaped wettability-gradient track – laid on a superhydrophobic background – is used to investigate the dynamics of the splitting process. A three-dimensional phase-field Cahn-Hilliard model for interfaces and the Navier-Stokes equations for transport are employed and solved numerically using the finite element method. Numerical results are used to decipher the motion and splitting of droplet at the Y junction using the principle of energy conservation. It is observed that droplet splitting depends on the configuration of the Y junction; droplets split faster for the superhydrophobic wedge angle of 90∘ and the splitting ratio (ratio of the sizes of daughter droplets) depends on the widths of the Y branches. A critical branch-width ratio (w2w1=0.79) is identified below which the droplet does not split and moves towards the branch of higher width and settles there. The present study provides the required theoretical underpinnings to achieve autonomous transport and splitting of droplets on open surfaces, which has clear potential for applications in Lab-on-a-Chip devices
Assessing the homogenization of urban land management with an application to US residential lawn care.
Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization
Droplet dynamics on a wettability patterned surface during spray impact
Wettability patterning of a surface is a passive method to manipulate the flow and heat transport mechanism in many physical processes and industrial applications. This paper proposes a rational wettability pattern comprised of multiple superhydrophilic wedges on a superhydrophobic background, which can continuously remove the impacted spray droplets from the horizontal surface. We observed that the spray droplets falling on the superhydrophilic wedge region spread and form a thin liquid film, which is passively transported away from the surface. However, most of the droplets falling on the superhydrophobic region move towards the wedge without any flooding. The physics of the passive transport of the liquid film on a wedge is also delved into using numerical modelling. In particular, we elucidate the different modes of droplet transport in the superhydrophobic region and the interaction of multiple droplets. The observed droplet dynamics could have profound implications in spray cooling systems and passive removal of liquid from a horizontal surface. This study’s findings will be beneficial for the optimization of efficient wettability patterned surfaces for spray cooling application
A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia.
The aim of this paper is to use a knowledge-driven expert-based geographical information system (GIS) model coupling with remote-sensing-derived parameters for groundwater potential mapping in an area of the Upper Langat Basin, Malaysia. In this study, nine groundwater storage controlling parameters that affect groundwater occurrences are derived from remotely sensed imagery, available maps, and associated databases. Those parameters are: lithology, slope, lineament, land use, soil, rainfall, drainage density, elevation, and geomorphology. Then the parameter layers were integrated and modeled using a knowledge-driven GIS of weighted linear combination. The weightage and score for each parameter and their classes are based on the Malaysian groundwater expert opinion survey. The predicted groundwater potential map was classified into four distinct zones based on the classification scheme designed by Department of Minerals and Geoscience Malaysia (JMG). The results showed that about 17% of the study area falls under low-potential zone, with 66% on moderate-potential zone, 15% with high-potential zone, and only 0.45% falls under very-high-potential zone. The results obtained in this study were validated with the groundwater borehole wells data compiled by the JMG and showed 76% of prediction accuracy. In addition statistical analysis indicated that hard rock dominant of the study area is controlled by secondary porosity such as distance from lineament and density of lineament. There are high correlations between area percentage of predicted groundwater potential zones and groundwater well yield. Results obtained from this study can be useful for future planning of groundwater exploration, planning and development by related agencies in Malaysia which provide a rapid method and reduce cost as well as less time consuming. The results may be also transferable to other areas of similar hydrological characteristics
A people-centred perspective on climate change, environmental stress, and livelihood resilience in Bangladesh
The Ganges–Brahmaputra delta enables Bangladesh to sustain a dense population, but it also exposes people to natural hazards. This article presents findings from the Gibika project, which researches livelihood resilience in seven study sites across Bangladesh. This study aims to understand how people in the study sites build resilience against environmental stresses, such as cyclones, floods, riverbank erosion, and drought, and in what ways their strategies sometimes fail. The article applies a new methodology for studying people’s decision making in risk-prone environments: the personal Livelihood History interviews (N = 28). The findings show how environmental stress, shocks, and disturbances affect people’s livelihood resilience and why adaptation measures can be unsuccessful. Floods, riverbank erosion, and droughts cause damage to agricultural lands, crops, houses, and properties. People manage to adapt by modifying their agricultural practices, switching to alternative livelihoods, or using migration as an adaptive strategy. In the coastal study sites, cyclones are a severe hazard. The study reveals that when a cyclone approaches, people sometimes choose not to evacuate: they put their lives at risk to protect their livelihoods and properties. Future policy and adaptation planning must use lessons learned from people currently facing environmental stress and shocks
Microcalorimetry and spectroscopic studies on the binding of dye janus green blue to deoxyribonucleic acid
The interaction of the phenazinium dye janus green blue (JGB) with deoxyribonucleic acid was investigated using isothermal titration calorimetry and thermal melting experiments. The calorimetric data were supplemented by spectroscopic studies. Calorimetry results suggested the binding affinity of the dye to DNA to be of the order of 105 M-1. The binding was predominantly entropy driven with a small negative favorable enthalpy contribution to the standard molar Gibbs energy change.The binding became weaker as the temperature and salt concentration was raised. The temperature dependence of the standard molar enthalpy changes yielded negative values of standard molar heat capacity change for the complexation revealing substantial hydrophobic contribution in the DNA binding. An enthalpy–entropy compensation behavior was also observed in the system. The salt dependence of the binding yielded the release of 0.69 number of cations on binding of each dye molecule. The non-polyelectrolytic contribution was found to be the predominant force in the binding interaction. Thermal melting studies revealed that the DNA helix was stabilized against denaturation by the dye. The binding was also characterized by absorbance, resonance light scattering and circular dichroism spectral measurements. The binding constants from the spectral results were close to those obtained from the calorimetric data. The energetic aspects of the interaction of the dye JGB to double stranded DNA are supported by strong binding revealed from the spectral data
- …
