55 research outputs found
Scientific review of the impact of climate change on plant pests: a global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems.
Climate change represents an unprecedented challenge to the world?s biosphere and to the global community. It also represents a unique challenge for plant health. Human activities and increased market globalization, coupled with rising temperatures, has led to a situation that is favourable to pest movement and establishment. This scientific review assesses the potential effects of climate change on plant pests and consequently on plant health. The evidence assessed strongly indicates that climate change has already expanded some pests? host range and geographical distribution, and may further increase the risk of pest introduction to new areas. This calls for international cooperation and development of harmonized plant protection strategies to help countries successfully adapt their pest risk management measures to climate change.bitstream/item/224381/1/Scientific-review-of-the-impact-of-climate-2021.pd
Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry
Climate change already challenges people’s livelihood globally and it also affects plant health. Rising temperatures facilitate the introduction and establishment of unwanted organisms, including arthropods, pathogens, and weeds (hereafter collectively called pests). For example, a single, unusually warm winter under temperate climatic conditions may be sufficient to assist the establishment of invasive plant pests, which otherwise would not be able to establish. In addition, the increased market globalization and related transport of recent years, coupled with increased temperatures, has led to favorable conditions for pest movement, invasion, and establishment worldwide. Most published studies indicate that, in general, pest risk will increase in agricultural ecosystems under climate-change scenarios, especially in today’s cooler arctic, boreal, temperate, and subtropical regions. This is also mostly true for forestry. Some pests have already expanded their host range or distribution, at least in part due to changes in climate. Examples of these pests, selected according to their relevance in different geographical areas, are summarized here. The main pathways used by them, directly and/or indirectly, are also discussed. Understanding these pathways can support decisions about mitigation and adaptation measures. The review concludes that preventive mitigation and adaptation measures, including biosecurity, are key to reducing the projected increases in pest risk in agriculture, horticulture, and forestry. Therefore, the sustainable management of pests is urgently needed. It requires holistic solutions, including effective phytosanitary regulations, globally coordinated diagnostic and surveillance systems, pest risk modeling and analysis, and preparedness for pro-active management
Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells.
Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence
FP173TUBULAR REGENERATION AFTER ACUTE KIDNEY INJURY OCCURS THROUGH CLONAL EXPANSION OF A PREEXISTING POPULATION OF TUBULAR PROGENITORS IN MOUSE
Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury.
Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Jagged-1/Notch pathway
Summary for policymakers of the scientific review of the impact of climate change on plant pests: a global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems.
Climate change represents an unprecedented challenge to the world?s biosphere and to the global community. It also represents a unique challenge for plant health. Human activities and increased market globalization, coupled with rising temperatures, has led to a situation that is favourable to pest movement and establishment. This summary for policy makers drawn from the FAO scientific review on the impact of climate change on plant pests, and by extension, on plant health provides concrete recommendations for decision makers on how to address the impact of climate change on plant health. The evidence assessed strongly indicates that climate change has already expanded some pests? host range and geographical distribution, and may further increase the risk of pest introduction to new areas. Increased international cooperation and development of harmonized plant protection strategies are crucial to help countries successfully adapt their pest risk management measures to climate change.bitstream/item/224382/1/Summary-for-policymakers-of-the-2021.pd
Characterization of Renal Progenitors Committed Toward Tubular Lineage and Their Regenerative Potential in Renal Tubular Injury.
- …
