42 research outputs found

    Observation of ion gettering effect in high temperature superconducting oxide material

    Get PDF
    Ion gettering effect has been observed in high-temperature superconducting YBa2Cu3O7 material. Silicon ions were implanted into the material and subsequent high-temperature annealing produced ion movement from a low concentration region to a higher concentration region where the damage of the crystal structure is severe. This gettering effect could be used to make a superconductor-nonsuperconductor-superconductor trilayer structure within a single YBCO film.published_or_final_versio

    High content live cell imaging for the discovery of new antimalarial marine natural products

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, <it>Plasmodium falciparum</it>.</p> <p>Methods</p> <p>A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown <it>in vitro </it>in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope.</p> <p>Results</p> <p>Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts.</p> <p>Conclusion</p> <p>Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.</p

    Integrated dataset of screening hits against multiple neglected disease pathogens.

    Get PDF
    New chemical entities are desperately needed that overcome the limitations of existing drugs for neglected diseases. Screening a diverse library of 10,000 drug-like compounds against 7 neglected disease pathogens resulted in an integrated dataset of 744 hits. We discuss the prioritization of these hits for each pathogen and the strong correlation observed between compounds active against more than two pathogens and mammalian cell toxicity. Our work suggests that the efficiency of early drug discovery for neglected diseases can be enhanced through a collaborative, multi-pathogen approach

    A research agenda for malaria eradication: basic science and enabling technologies.

    Get PDF
    Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences

    Phenotypic screening of small molecules with antimalarial activity for three different parasitic life stages

    No full text
    Malaria remains one of the deadliest infectious diseases globally. Available therapeutic agents are already limited in their efficacy, and drug resistance threatens to diminish further our ability to prevent and treat the disease. Despite a renewed effort to identify compounds with antimalarial activity, the drug discovery and development pipeline lacks target diversity and availability of compounds that target liver- and gametocyte-stage parasites. Phenotypic screens are a powerful and valuable tool for identifying new chemical compounds with antimalarial activity. This chapter highlights recent phenotypic screening methodologies for all three parasitic life stages
    corecore