2,286 research outputs found
Pleosporales
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae
Light Sneutrino Dark Matter at the LHC
In supersymmetric (SUSY) models with Dirac neutrino masses, a weak-scale
trilinear A-term that is not proportional to the small neutrino Yukawa
couplings can induce a sizable mixing between left and right-handed sneutrinos.
The lighter sneutrino mass eigenstate can hence become the lightest SUSY
particle (LSP) and a viable dark matter candidate. In particular, it can be an
excellent candidate for light dark matter with mass below ~10 GeV. Such a light
mixed sneutrino LSP has a dramatic effect on SUSY signatures at the LHC, as
charginos decay dominantly into the light sneutrino plus a charged lepton, and
neutralinos decay invisibly to a neutrino plus a sneutrino. We perform a
detailed study of the LHC potential to resolve the light sneutrino dark matter
scenario by means of three representative benchmark points with different
gluino and squark mass hierarchies. We study in particular the determination of
the LSP (sneutrino) mass from cascade decays involving charginos, using the mT2
variable. Moreover, we address measurements of additional invisible sparticles,
in our case the lightest neutralino, and the question of discrimination against
the MSSM.Comment: 25 pages, 16 figure
Sqrt{shat}_{min} resurrected
We discuss the use of the variable sqrt{shat}_{min}, which has been proposed
in order to measure the hard scale of a multi parton final state event using
inclusive quantities only, on a SUSY data sample for a 14 TeV LHC. In its
original version, where this variable was proposed on calorimeter level, the
direct correlation to the hard scattering scale does not survive when effects
from soft physics are taken into account. We here show that when using
reconstructed objects instead of calorimeter energy and momenta as input, we
manage to actually recover this correlation for the parameter point considered
here. We furthermore discuss the effect of including W + jets and t tbar+jets
background in our analysis and the use of sqrt{shat}_{min} for the suppression
of SM induced background in new physics searches.Comment: 23 pages, 9 figures; v2: 1 figure, several subsections and references
as well as new author affiliation added. Corresponds to published versio
Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking
We propose the hybrid gravity-gauge mediated supersymmetry breaking where the
gravitino mass is about several GeV. The strong constraints on supersymmetry
viable parameter space from the CMS and ATLAS experiments at the LHC can be
relaxed due to the heavy colored supersymmetric particles, and it is consistent
with null results in the dark matter (DM) direct search experiments such as
XENON100. In particular, the possible maximal flavor and CP violations from the
relatively small gravity mediation may naturally account for the recent LHCb
anomaly. In addition, because the gravitino mass is around the asymmetric DM
mass, we propose the asymmetric origin of the gravitino relic density and solve
the cosmological coincident problem on the DM and baryon densities \Omega_{\rm
DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric
metastable particle (AMP) late decay. However, we show that there is no AMP
candidate in the minimal supersymmetric Standard Model (SM) due to the robust
gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized
in the well motivated supersymmetric SMs with vector-like particles or
continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass
can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio
The Maximal Inverse Seesaw from Operator and Oscillating Asymmetric Sneutrino Dark Matter
The maximal supersymmetric inverse seesaw mechanism (MSIS)
provides a natural way to relate asymmetric dark matter (ADM) with neutrino
physics. In this paper we point out that, MSIS is a natural outcome if one
dynamically realizes the inverse seesaw mechanism in the next-to minimal
supersymmetric standard model (NMSSM) via the dimension-five operator
, with the NMSSM singlet developing TeV scale VEV; it
slightly violates lepton number due to the suppression by the fundamental scale
, thus preserving maximally. The resulting sneutrino is a
distinguishable ADM candidate, oscillating and favored to have weak scale mass.
A fairly large annihilating cross section of such a heavy ADM is available due
to the presence of singlet.Comment: journal versio
Impact of Fruit and Fruit Juice on Death and Disease Incidence: A Sex-Specific Longitudinal Analysis of 18 603 Adults.
BACKGROUND: The health benefits of fruits are well established, but fruit juice has been more controversial. Fruit and juice are often ingested with other foods, which prompted our investigation to determine whether fruit consumed as juice may negate the beneficial effects of consuming whole fruit in people with cardiovascular disease. METHODS AND RESULTS: We retrospectively analyzed data from a population-based study in Australia (the 45 and Up Study) linked with hospitalization and mortality data up to September 2018. Kaplan-Meier survival estimates and Cox proportional hazards models were used to examine effects of fruit, fruit juice, and the combination of fruit and fruit juice in relation to death and disease incidence among men and women living with cardiovascular disease. A total of 7308 deaths occurred among 18 603 participants diagnosed with cardiovascular disease over a 13-year follow-up. After multivariable adjustment, inadequate fruit intake (hazard ratio [HR], 1.12 [95% CI, 1.01-1.24]) and high fruit juice intake (HR, 1.26 [95% CI, 1.12-1.41]) predicted all-cause mortality in women. Also, high fruit juice intake plus either adequate fruit intake (HR, 1.18 [95% CI, 1.02-1.37]) or inadequate fruit intake (HR, 1.43 [95% CI, 1.21-1.69]) predicted mortality in women. No relationships were found in men after multivariable adjustments. Also, we found no prognostic value for fruit and fruit juice intake on disease incidence. CONCLUSIONS: In adults with cardiovascular disease, we found that fruit juice (in combination with adequate or inadequate fruit intake) predicted mortality in women but not in men. These effects became less clear when focusing on disease incidence
Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model
We investigate signatures of the minimal supersymmetric inverse seesaw model
at the large hadron collider (LHC) with three isolated leptons and large
missing energy (3\ell + \mET or 2\ell + 1\tau + \mET, with \ell=e,\mu) in the
final state. This signal has its origin in the decay of chargino-neutralino
(\chpm1\ntrl2) pair, produced in pp collisions. The two body decays of the
lighter chargino into a charged lepton and a singlet sneutrino has a
characteristic decay pattern which is correlated with the observed large
atmospheric neutrino mixing angle. This correlation is potentially observable
at the LHC by looking at the ratios of cross sections of the trilepton + \mET
channels in certain flavour specific modes. We show that even after considering
possible leading standard model backgrounds these final states can lead to
reasonable discovery significance at the LHC with both 7 TeV and 14 TeV
center-of-mass energy.Comment: 28 pages, 9 .eps figures. 3 new figures and discussions on LHC
observables added, minor modifications in text and in the abstract, 23 new
references added, matches with the published version in JHE
Phenomenology of Light Sneutrino Dark Matter in cMSSM/mSUGRA with Inverse Seesaw
We study the possibility of a light Dark Matter (DM) within a constrained
Minimal Supersymmetric Standard Model (cMSSM) framework augmented by a SM
singlet-pair sector to account for the non-zero neutrino masses by inverse
seesaw mechanism. Working within a 'hybrid' scenario with the MSSM sector fixed
at high scale and the singlet neutrino sector at low scale, we find that,
contrary to the case of the usual cMSSM where the neutralino DM cannot be very
light, we can have a light sneutrino DM with mass below 100 GeV satisfying all
the current experimental constraints from cosmology, collider as well as
low-energy experiments. We also note that the supersymmetric inverse seesaw
mechanism with sneutrino as the lightest supersymmetric partner can have
enhanced same-sign dilepton final states with large missing transverse energy
(mET) coming from the gluino- and squark-pair as well as the squark-gluino
associated productions and their cascade decay through charginos. We present a
collider study for the same-sign dilepton+jets+mET signal in this scenario and
propose some distinctions with the usual cMSSM. We also comment on the
implications of such a light DM scenario on the invisible decay width of an 125
GeV Higgs boson.Comment: 24 pages, 4 figures, 7 tables; matches published versio
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
