158 research outputs found

    Influence of resource availability on the foraging strategies of the triangle butterflyfish chaetodon triangulum in the Maldives.

    Get PDF
    Obligate coral feeders such as many members of the Chaetodontidae family (also known as butterflyfish) often show strong preferences for particular coral species. This is thought to have evolved through natural selection as an energy-maximising strategy. Although some species remain as highly specialised feeders throughout their lifetime, many corallivores show a degree of dietary versatility when food abundance is limited; a strategy described by the optimal foraging theory. This study aimed to examine if, within-reef differences in the feeding regime and territory size of the Triangle Butterflyfish Chaetodon triangulum occurred, as a function of resource availability. Results showed that the dietary specialisation of C. triangulum was significant in both areas of low and high coral cover (χL22 = 2.52 x 102, P<0.001 and χL22 = 3.78 x 102, P<0.001 respectively). Resource selection functions (RSFs), calculated for the two main sites of contrasting coral assemblage, showed that in the resource-rich environments, only two Genera (Acropora and Pocillopora) were preferentially selected for, with the majority of other corals being actively ‘avoided’. Conversely, in territories of lower coral coverage, C. triangulum was being less selective in its prey choice and consuming corals in a more even distribution with respect to their availability. Interestingly, coral cover appeared to show no significant effect on feeding rate, however it was a primary determinant of territory size. The findings of the study agree with the predictions of the optimal foraging theory, in that where food supply is scarce, dietary specialisation is minimised and territory size increased. This results in maximising energy intake. This study represents the first scientific evidence that C. triangulum is an obligate corallivore and, as with many other butterflyfish, is therefore dependent on healthy scleractinian corals for survival.N

    New records of corallivory in the Red Sea

    Full text link

    External tagging does not affect the feeding behavior of a coral reef fish, Chaetodon vagabundus (Pisces: Chaetodontidae)

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of for personal use, not for redistribution. The definitive version was published in Environmental Biology of Fishes 86 (2009): 447-450, doi:10.1007/s10641-009-9545-9.Increasingly, the ability to recognize individual fishes is important for studies of population dynamics, ecology, and behavior. Although a variety of methods exist, external tags remain one of the most widely applied because they are both effective and cost efficient. However, a key assumption is that neither the tagging procedure nor the presence of a tag negatively affects the individual. While this has been demonstrated for relatively coarse metrics such as growth and survival, few studies have examined the impact of tags and tagging on more subtle aspects of behavior. We tagged adult vagabond butterflyfish (Chaetodon vagabundus) occupying a 30-ha insular reef in Kimbe Bay, Papua New Guinea, using a commonly-utilized t-bar anchor tag. We quantified and compared feeding behavior (bite rate), which is sensitive to stress, of tagged and untagged individuals over four separate sampling periods spanning four months post-tagging. Bite rates did not differ between tagged and untagged individuals at each sampling period and, combined with additional anecdotal observations of normal pairing behavior and successful reproduction, suggest that tagging did not adversely affect individuals.The authors gratefully acknowledge funding from the Fulbright Program, National Science Foundation and the Australian Research Council

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content

    27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore

    Get PDF
    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3–4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6–7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates

    Habitat associations of juvenile versus adult butterflyfishes

    Get PDF
    Author Posting. © Springer-Verlag, 2008. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Coral Reefs 27 (2008): 541-551, doi:10.1007/s00338-008-0357-8.Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while some species settle directly in adult habitats, but there is not any general explanation to account for these differences in settlement strategies among coral reef fishes. This study compared distribution patterns and habitat associations of juvenile (young of the year) butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga, Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance on coral for food, exhibited marked differences in habitat association of juvenile versus adult individuals. Juveniles of these species were consistently found in shallow-water habitats, whereas adult conspecifics were widely distributed throughout a range of habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius, Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes with strong reliance on corals appear to be constrained to settle in habitats that provide access to essential prey resources, precluding their use of distinct juvenile habitats. More generalist butterflyfishes, however, appear to utilise distinct juvenile habitats and exhibit marked differences in the distribution of juveniles versus adults.This research was funded by a JCU Program Grant to MSP, while MLB was supported by an NSF (USA) Graduate Research Fellowship

    A multi-method characterization of Elasmobranch & Cheloniidae communities of the north-eastern Red Sea and Gulf of Aqaba

    Get PDF
    This is the final version. Available on open access from the Public Library of Science via the DOI in this recordData Availability: All relevant data are within the paper and its Supporting Information files.The Red Sea is particularly biodiverse, hosting high levels of endemism and numerous populations whose extinction risk is heightened by their relative isolation. Elasmobranchs and sea turtles have likely suffered recent declines in this region, although data on their distribution and biology are severely lacking, especially on the eastern side of the basin in Saudi Arabian waters. Here, we present sightings of elasmobranchs and sea turtles across the north-eastern Red Sea and Gulf of Aqaba collected through a combination of survey methods. Over 455 survey hours, we recorded 407 sightings belonging to 26 elasmobranch species and two sea turtle species, more than 75% of which are of conservation concern. We identified 4 species of rays and 9 species of sharks not previously recorded in Saudi Arabia and report a range extension for the pink whipray (Himantura fai) and the round ribbontail ray (Taeniurops meyeni) into the Gulf of Aqaba. High density of sightings of conservation significance, including green and hawksbill sea turtles and halavi guitarfish were recorded in bay systems along the eastern Gulf of Aqaba and the Saudi Arabian coastline bordering the north-eastern Red Sea, and many carcharhinid species were encountered at offshore seamounts in the region. Our findings provide new insights into the distribution patterns of megafaunal assemblages over smaller spatial scales in the region, and facilitate future research and conservation efforts, amidst ongoing, large-scale coastal developments in the north-eastern Red Sea and Gulf of Aqaba.NEOM Compan
    corecore