21 research outputs found

    Feature extraction and selection for Arabic tweets authorship authentication

    Get PDF
    © 2017, Springer-Verlag Berlin Heidelberg. In tweet authentication, we are concerned with correctly attributing a tweet to its true author based on its textual content. The more general problem of authenticating long documents has been studied before and the most common approach relies on the intuitive idea that each author has a unique style that can be captured using stylometric features (SF). Inspired by the success of modern automatic document classification problem, some researchers followed the Bag-Of-Words (BOW) approach for authenticating long documents. In this work, we consider both approaches and their application on authenticating tweets, which represent additional challenges due to the limitation in their sizes. We focus on the Arabic language due to its importance and the scarcity of works related on it. We create different sets of features from both approaches and compare the performance of different classifiers using them. We experiment with various feature selection techniques in order to extract the most discriminating features. To the best of our knowledge, this is the first study of its kind to combine these different sets of features for authorship analysis of Arabic tweets. The results show that combining all the feature sets we compute yields the best results

    Sildenafil, a phosphodiesterase type 5 inhibitor, enhances the antidepressant activity of amitriptyline but not desipramine, in the forced swim test in mice

    Get PDF
    The cholinergic theory of depression highlights the involvement of muscarinic acetylcholine receptors in the neurobiology of mood disorders. The present study was designed to investigate the effect of sildenafil, a phosphodiesterase type 5 inhibitor which exhibits cholinomimetic properties, alone and in combination with scopolamine in the forced swim test in mice. Moreover, we assessed the ability of sildenafil to modify the antidepressant activity of two tricyclic antidepressants with distinct cholinolytic activity, amitriptyline and desipramine. Swim sessions were conducted by placing mice in glass cylinders filled with water for 6 min and the duration of behavioral immobility during the last 4 min of the test was evaluated. Locomotor activity was measured with photoresistor actimeters. To evaluate the potential pharmacokinetic interaction between amitriptyline and sildenafil, brain and serum concentrations of amitriptyline were determined by HPLC. Sildenafil (1.25–20 mg/kg) as well as scopolamine (0.5 mg/kg) and its combination with sildenafil (1.25 mg/kg) did not affect the total immobility time duration. However, joint administration of scopolamine with sildenafil at doses of 2.5 and 5 mg/kg significantly reduced immobility time as compared to control group. Moreover, co-administration of scopolamine with sildenafil at the highest dose (5 mg/kg) significantly decreased immobility time as compared to scopolamine-treated group. Sildenafil (1.25, 2.5 and 5 mg/kg) significantly enhanced the antidepressant activity of amitriptyline (5 mg/kg). No changes in anti-immobility action of desipramine (20 mg/kg) in combination with sildenafil (5, 10 and 20 mg/kg) were observed. Sildenafil did not affect amitriptyline level in both brain and serum. In conclusion, the present study suggests that sildenafil may enhance the activity of antidepressant drugs which exhibit cholinolytic activity

    Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    No full text
    <div><p>The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase <i>Casp3</i> and Wnt transcription factor <i>Tcf7l2</i>. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the <i>Acca1</i> thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.</p></div

    Fate Analysis of Adult Hippocampal Progenitors in a Murine Model of Fetal Alcohol Spectrum Disorder (FASD)

    Get PDF
    Prenatal alcohol exposure can lead to fetal alcohol spectrum disorder (FASD) and associated behavioral impairments that may be linked to disruptions in adult hippocampal neurogenesis. Social and physical enrichment has been proposed as a potential therapeutic approach toward reversing behavioral deficits associated with FASD and is also a potent stimulator of adult hippocampal neurogenesis. In the present study, we utilized a genetic fate mapping approach in nestin-CreER(T2)/YFP bitransgenic mice to identify the stage-specific impact of prenatal alcohol exposure on the stepwise maturation of adult hippocampal progenitors. Using a limited alcohol access “drinking-in-the-dark” model of FASD, we confirm previous findings that moderate prenatal alcohol exposure has no effect on adult neurogenesis under standard housing conditions, but abolishes the neurogenic response to enriched environment (EE). Furthermore, we demonstrate that this effect is primarily due to failed EE-mediated survival of postmitotic neurons. Finally, we demonstrate that the neurogenic deficit is associated with impaired spatial pattern recognition, as demonstrated by delayed learning of FASD-EE mice in an A–B contextual discrimination task. These results identify a potential maturational stage-specific mechanism(s) underlying impaired neurogenic function in a preclinical model of FASD, and provide a basis for testing regulatory pathways in this model through conditional and inducible manipulation of gene expression in the adult hippocampal progenitor population
    corecore