81 research outputs found
Anchoring of proteins to lactic acid bacteria
The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.
Real-Time PCR in HIV/Trypanosoma cruzi Coinfection with and without Chagas Disease Reactivation: Association with HIV Viral Load and CD4+ Level
Chagas disease is endemic in Latin America and is caused by the flagellate protozoan T. cruzi. The acute phase is asymptomatic in the majority of the cases and rarely causes inflammation of the heart or the central nervous system. Most infected patients progress to a chronic phase, characterized by cardiac or digestive involvement when not asymptomatic. However, when patients are also exposed to an immunosuppressant (such as chemotherapy), neoplasia, or other infections such as HIV, T. cruzi infection may develop into a severe disease (Chagas disease reactivation) involving the heart and central nervous system. The current microscopic methods for diagnosing Chagas disease reactivation are not sensitive enough to prevent the high rate of death observed in these cases. Therefore, we propose a quantitative method to monitor blood levels of the parasite, which will allow therapy to be administered as early as possible, even if the patient has not yet presented symptoms
Caenorhabditis elegans Cyclin B3 Is Required for Multiple Mitotic Processes Including Alleviation of a Spindle Checkpoint–Dependent Block in Anaphase Chromosome Segregation
The master regulators of the cell cycle are cyclin-dependent kinases (Cdks), which influence the function of a myriad of proteins via phosphorylation. Mitotic Cdk1 is activated by A-type, as well as B1- and B2-type, cyclins. However, the role of a third, conserved cyclin B family member, cyclin B3, is less well defined. Here, we show that Caenorhabditis elegans CYB-3 has essential and distinct functions from cyclin B1 and B2 in the early embryo. CYB-3 is required for the timely execution of a number of cell cycle events including completion of the MII meiotic division of the oocyte nucleus, pronuclear migration, centrosome maturation, mitotic chromosome condensation and congression, and, most strikingly, progression through the metaphase-to-anaphase transition. Our experiments reveal that the extended metaphase delay in CYB-3–depleted embryos is dependent on an intact spindle assembly checkpoint (SAC) and results in salient defects in the architecture of holocentric metaphase chromosomes. Furthermore, genetically increasing or decreasing dynein activity results in the respective suppression or enhancement of CYB-3–dependent defects in cell cycle progression. Altogether, these data reveal that CYB-3 plays a unique, essential role in the cell cycle including promoting mitotic dynein functionality and alleviation of a SAC–dependent block in anaphase chromosome segregation
The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization
Materials containing radionuclides of natural origin, which is modified by
human made processes and being subject to regulation because of their
radioactivity are known as NORM. We present a brief review of the main
categories of non-nuclear industries together with the levels of activity
concentration in feed raw materials, products and waste, including mechanisms
of radioisotope enrichments. The global management of NORM shows a high level
of complexity, mainly due to different degrees of radioactivity enhancement and
the huge amount of worldwide waste production. The future tendency of
guidelines concerning environmental protection will require both a systematic
monitoring based on the ever-increasing sampling and high performance of gamma
ray spectroscopy. On the ground of these requirements a new low background
fully automated high-resolution gamma-ray spectrometer MCA_Rad has been
developed. The design of Pb and Cu shielding allowed to reach a background
reduction of two order of magnitude with respect to laboratory radioactivity. A
severe lowering of manpower cost is obtained through a fully automation system,
which enables up to 24 samples to be measured without any human attendance. Two
coupled HPGe detectors increase the detection efficiency, performing accurate
measurements on sample volume (180 cc) with a reduction of sample transport
cost of material. Details of the instrument calibration method are presented.
MCA_Rad system can measure in less than one hour a typical NORM sample enriched
in U and Th with some hundreds of Bq/kg, with an overall uncertainty less than
5%. Quality control of this method has been tested. Measurements of certified
reference materials RGK-1, RGU-2 and RGTh-1 containing concentrations of K, U
and Th comparable to NORM have been performed, resulting an overall relative
discrepancy of 5% among central values within the reported uncertainty.Comment: 21 pages, 4 figures, 6 table
Shaping immune responses through the activation of dendritic cells–P2 receptors
Dendritic cells (DCs) activate and shape the adaptive immune response by capturing antigens, migrating to peripheral lymphoid organs where naïve T cells reside, expressing high levels of MHC and costimulatory molecules and secreting cytokines and chemokines. DCs are endowed with a high degree of functional plasticity and their functions are tightly regulated. Besides initiating adaptive immune responses, DCs play a key role in maintaining peripheral tolerance toward self-antigens. On the basis of the information gathered from the tissue where they reside, DCs adjust their functional activity to ensure that protective immunity is favoured while unwanted or exaggerated immune responses are prevented. A wide variety of signals from neighbouring cells affecting DC functional activity have been described. Here we will discuss the complex role of extracellular nucleotides in the regulation of DC function and the role of P2 receptors as possible tools to manipulate immune responses
Correlation between grain nutritional content and pasting properties of pre-gelatinized red rice flour
A multi-element psychosocial intervention for early psychosis (GET UP PIANO TRIAL) conducted in a catchment area of 10 million inhabitants: study protocol for a pragmatic cluster randomized controlled trial
Multi-element interventions for first-episode psychosis (FEP) are promising, but have mostly been conducted in non-epidemiologically representative samples, thereby raising the risk of underestimating the complexities involved in treating FEP in 'real-world' services
Home noninvasive ventilatory support for patients with chronic obstructive pulmonary disease: patient selection and perspectives
Jan Hendrik Storre,1,2 Jens Callegari,3 Friederike Sophie Magnet,3 Sarah Bettina Schwarz,3 Marieke Leontine Duiverman,4,5 Peter Jan Wijkstra,4,5 Wolfram Windisch3 1Department of Intensive Care, Sleep Medicine and Mechanical Ventilation, Asklepios Fachkliniken Munich-Gauting, Gauting, Germany; 2Department of Pneumology, University Medical Hospital, Freiburg, Germany; 3Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH Witten/Herdecke University, Faculty of Health/School of Medicine, Cologne, Germany; 4Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; 5Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, the Netherlands Abstract: Long-term or home mechanical noninvasive ventilation (Home-NIV) has become a well-established form of therapy over the last few decades for chronic hypercapnic COPD patients in European countries. However, meta-analyses and clinical guidelines do not recommend Home-NIV for COPD patients on a routine basis. In particular, there is ongoing debate about Home-NIV in chronic hypercapnic COPD regarding the overall effects, the most favorable treatment strategy, the selection of eligible patients, and the time point at which it is prescribed. The current review focuses on specific aspects of patient selection and discusses the various scientific as well as clinical-guided perspectives on Home-NIV in patients suffering from chronic hypercapnic COPD. In addition, special attention will be given to the topic of ventilator settings and interfaces. Keywords: exacerbation, pulmonary emphysema, hypercapnia, mechanical ventilation, respiratory insufficienc
[Determination of the peripheral field of several trigeminal afferent fibers present in the oculomotor nerve].
- …
