10,072 research outputs found

    UV-Diagram: A Voronoi Diagram for Uncertain Spatial Databases

    Get PDF
    published_or_final_versio

    Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment

    Get PDF
    Wnt/β-catenin signaling is responsible for the generation of cancer stem cells (CSCs) in many human tumors, including nasopharyngeal carcinoma (NPC). Recent studies demonstrate that Wnt or PORCN inhibitor, Wnt-C59, inhibits tumor growth in MMTV-WNT1 transgenic mice. The effect of Wnt-C59 in human tumors is not clear. In this study, the NPC cell lines investigated manifest heterogeneous responses to Wnt-C59 treatment. Wnt-C59 decreased tumor growth of SUNE1 cells in mice immediately following the administration of Wnt-C59. Mice injected with HNE1 cells did not develop visible tumors after the treatment of Wnt-C59, while control mice developed 100% tumors. Wnt-C59 inhibited stemness properties of NPC cells in a dosage-dependent manner by arresting sphere formation in both HNE1 and SUNE1 cells. Thus, Wnt-C59 has the potential to eradicate CSCs in human tumors. Active β-catenin and Axin2 proteins were strongly expressed in stromal cells surrounding growing tumors, confirming the importance of Wnt signaling activities in the microenvironment being driving forces for cell growth. These novel findings confirm the ability of Wnt-C59 to suppress Wnt-driven undifferentiated cell growth in NPC. Both anti-Wnt signaling and anti-CSC approaches are feasible strategies in cancer therapy.published_or_final_versio

    Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array

    Full text link
    We propose a near-infrared super resolution imaging system without a lens or a mirror but with an array of metallic nanoshell particle chain. The imaging array can plasmonically transfer the near-field components of dipole sources in the incoherent and coherent manners and the super resolution images can be reconstructed in the output plane. By tunning the parameters of the metallic nanoshell particle, the plasmon resonance band of the isolate nanoshell particle red-shifts to the near-infrared region. The near-infrared super resolution images are obtained subsequently. We calculate the field intensity distribution at the different planes of imaging process using the finite element method and find that the array has super resolution imaging capability at near-infrared wavelengths. We also show that the image formation highly depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure

    Deciphering Universal Extra Dimension from the top quark signals at the CERN LHC

    Get PDF
    Models based on Universal Extra Dimensions predict Kaluza-Klein (KK) excitations of all Standard Model (SM) particles. We examine the pair production of KK excitations of top- and bottom-quarks at the Large Hadron Collider. Once produced, the KK top/bottom quarks can decay to bb-quarks, leptons and the lightest KK-particle, γ1\gamma_1, resulting in 2 bb-jets, two opposite sign leptons and missing transverse momentum, thereby mimicing top-pair production. We show that, with a proper choice of kinematic cuts, an integrated luminosity of 100 fb1^{-1} would allow a discovery for an inverse radius upto R1=750R^{-1} = 750 GeV.Comment: 18 pages, 14 figures, Accepted for publication in JHE

    Differential expression of Toll-like receptor 4 in healthy and diseased human gingiva

    Get PDF
    BACKGROUND AND OBJECTIVE: Lipopolysaccharide (LPS)-mediated signaling in host cells involves Toll-like receptor 4 (TLR4) accessory molecules, including LPS-binding protein (LBP), cluster of differentiation 14 (CD14) and lymphocyte antigen 96 (MD-2). However, expression of these innate defense molecules in various compartments of the human periodontium is unclear. The aim of this study was to investigate the expression profile of TLR4 in human gingiva. MATERIAL AND METHODS: Human gingival biopsies were collected from healthy gingival or chronic periodontitis tissue. Primary gingival keratinocytes and fibroblasts were cultured. Immunohistochemical analysis for TLR4 was performed. Transcripts of TLR4, MD-2, CD14 and LBP, and their protein products, were examined using RT-PCR, immunoprecipitation and immunoblotting. The interactions between these molecules in keratinocytes and fibroblasts were investigated by co-immunoprecipitation. RESULTS: TLR4 immunoreactivity was found in healthy gingival epithelium and periodontitis tissue, and appeared to be lower in junctional epithelium ( p </= 0.01). Fibroblasts and inflammatory cells stained more strongly for TLR4 in diseased periodontal tissues (p < 0.001). Three TLR4 splicing variants, two MD-2 splicing variants and one CD14 mRNA were expressed by gingival keratinocytes and fibroblasts. Expression of TLR4, CD14 and MD-2 proteins was detected in keratinocytes and fibroblasts in vitro. TLR4 protein from gingival keratinocytes and fibroblasts could be co-immunoprecipitated with CD14 or MD-2, suggesting an association between the related molecules in vivo. LBP transcript was detected in gingival biopsies, but not in primary cultures of gingival keratinocytes or fibroblasts. CONCLUSION: TLR4, CD14 and MD-2, but not LBP, are expressed in human gingival keratinocytes and fibroblasts. The TLR4 expression level in the junctional epithelium appeared to be lowest within the periodontal epithelial barrier.postprin

    A Method to Improve the Early Stages of the Robotic Process Automation Lifecycle

    Get PDF
    The robotic automation of processes is of much interest to organizations. A common use case is to automate the repetitive manual tasks (or processes) that are currently done by back-office staff through some information system (IS). The lifecycle of any Robotic Process Automation (RPA) project starts with the analysis of the process to automate. This is a very time-consuming phase, which in practical settings often relies on the study of process documentation. Such documentation is typically incomplete or inaccurate, e.g., some documented cases never occur, occurring cases are not documented, or documented cases differ from reality. To deploy robots in a production environment that are designed on such a shaky basis entails a high risk. This paper describes and evaluates a new proposal for the early stages of an RPA project: the analysis of a process and its subsequent design. The idea is to leverage the knowledge of back-office staff, which starts by monitoring them in a non-invasive manner. This is done through a screen-mousekey- logger, i.e., a sequence of images, mouse actions, and key actions are stored along with their timestamps. The log which is obtained in this way is transformed into a UI log through image-analysis techniques (e.g., fingerprinting or OCR) and then transformed into a process model by the use of process discovery algorithms. We evaluated this method for two real-life, industrial cases. The evaluation shows clear and substantial benefits in terms of accuracy and speed. This paper presents the method, along with a number of limitations that need to be addressed such that it can be applied in wider contexts.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-

    Discrimination of low missing energy look-alikes at the LHC

    Full text link
    The problem of discriminating possible scenarios of TeV scale new physics with large missing energy signature at the Large Hadron Collider (LHC) has received some attention in the recent past. We consider the complementary, and yet unexplored, case of theories predicting much softer missing energy spectra. As there is enough scope for such models to fake each other by having similar final states at the LHC, we have outlined a systematic method based on a combination of different kinematic features which can be used to distinguish among different possibilities. These features often trace back to the underlying mass spectrum and the spins of the new particles present in these models. As examples of "low missing energy look-alikes", we consider Supersymmetry with R-parity violation, Universal Extra Dimensions with both KK-parity conserved and KK-parity violated and the Littlest Higgs model with T-parity violated by the Wess-Zumino-Witten anomaly term. Through detailed Monte Carlo analysis of the four and higher lepton final states predicted by these models, we show that the models in their minimal forms may be distinguished at the LHC, while non-minimal variations can always leave scope for further confusion. We find that, for strongly interacting new particle mass-scale ~600 GeV (1 TeV), the simplest versions of the different theories can be discriminated at the LHC running at sqrt{s}=14 TeV within an integrated luminosity of 5 (30) fb^{-1}.Comment: 40 pages, 10 figures; v2: Further discussions, analysis and one figure added, ordering of certain sections changed, minor modifications in the abstract, version as published in JHE

    PTPRG suppresses tumor growth and invasion via inhibition of Akt signaling in nasopharyngeal carcinoma

    Get PDF
    Protein Tyrosine Phosphatase, Receptor Type G (PTPRG) was identified as a candidate tumor suppressor gene in nasopharyngeal carcinoma (NPC). PTPRG induces significant in vivo tumor suppression in NPC. We identified EGFR as a PTPRG potential interacting partner and examined this interaction. Dephosphorylation of EGFR at EGFR-Y1068 and -Y1086 sites inactivated the PI3K/Akt signaling cascade and subsequent down-regulation of downstream pro-angiogenic and -invasive proteins (VEGF, IL6, and IL8) and suppressed tumor cell proliferation, angiogenesis, and invasion. The effect of Akt inhibition in NPC cells was further validated by Akt knockdown experiments in the PTPRG-down-regulated NPC cell lines. Our results suggested that inhibition of Akt in NPC cells induces tumor suppression at both the in vitro and in vivo levels, and also importantly, in vivo metastasis. In conclusion, we confirmed the vital role of PTPRG in inhibiting Akt signaling with the resultant suppression of in vivo tumorigenesis and metastasis.published_or_final_versio

    Cytotoxic polyfunctionality maturation of cytomegalovirus-pp65-specific CD4 + and CD8 + T-cell responses in older adults positively correlates with response size

    Get PDF
    Cytomegalovirus (CMV) infection is one of the most common persistent viral infections in humans worldwide and is epidemiologically associated with many adverse health consequences during aging. Previous studies yielded conflicting results regarding whether large, CMV-specific T-cell expansions maintain their function during human aging. In the current study, we examined the in vitro CMV-pp65-reactive T-cell response by comprehensively studying five effector functions (i.e., interleukin-2, tumor necrosis factor-α, interferon-γ, perforin, and CD107a expression) in 76 seropositive individuals aged 70 years or older. Two data-driven, polyfunctionality panels (IL-2-associated and cytotoxicity-associated) derived from effector function co-expression patterns were used to analyze the results. We found that, CMV-pp65-reactive CD8 + and CD4 + T cells contained similar polyfunctional subsets, and the level of polyfunctionality was related to the size of antigen-specific response. In both CD8 + and CD4 + cells, polyfunctional cells with high cytotoxic potential accounted for a larger proportion of the total response as the total response size increased. Notably, a higher serum CMV-IgG level was positively associated with a larger T-cell response size and a higher level of cytotoxic polyfunctionality. These findings indicate that CMV-pp65-specific CD4 + and CD8 + T cell undergo simultaneous cytotoxic polyfunctionality maturation during aging
    corecore