38 research outputs found
Higgs Physics: Theory
I review the theoretical aspects of the physics of Higgs bosons, focusing on
the elements that are relevant for the production and detection at present
hadron colliders. After briefly summarizing the basics of electroweak symmetry
breaking in the Standard Model, I discuss Higgs production at the LHC and at
the Tevatron, with some focus on the main production mechanism, the gluon-gluon
fusion process, and summarize the main Higgs decay modes and the experimental
detection channels. I then briefly survey the case of the minimal
supersymmetric extension of the Standard Model. In a last section, I review the
prospects for determining the fundamental properties of the Higgs particles
once they have been experimentally observed.Comment: 21 pages, 15 figures. Talk given at the XXV International Symposium
on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27
August 2011, Mumbai, Indi
Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC
Higgs boson production in association with a hard central photon and two
forward tagging jets is expected to provide valuable information on Higgs boson
couplings in a range where it is difficult to disentangle weak-boson fusion
processes from large QCD backgrounds. We present next-to-leading order QCD
corrections to Higgs production in association with a photon via weak-boson
fusion at a hadron collider in the form of a flexible parton-level Monte Carlo
program. The QCD corrections to integrated cross sections are found to be small
for experimentally relevant selection cuts, while the shape of kinematic
distributions can be distorted by up to 20% in some regions of phase space.
Residual scale uncertainties at next-to-leading order are at the few-percent
level.Comment: 17 pages, 7 figures, 1 tabl
Photon Radiation with MadDipole
We present the automation of a subtraction method for photon radiation using
the dipole formalism within the MadGraph framework. The subtraction terms are
implemented both in dimensional regularization and mass regularization for
massless and massive cases and non-collinear-safe observables are accounted
for.Comment: 23 pages, 2 figures, minor additions, references added, version
published in JHE
Composite Higgs Search at the LHC
The Higgs boson production cross-sections and decay rates depend, within the
Standard Model (SM), on a single unknown parameter, the Higgs mass. In
composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone
boson from a strongly-interacting sector, additional parameters control the
Higgs properties which then deviate from the SM ones. These deviations modify
the LEP and Tevatron exclusion bounds and significantly affect the searches for
the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced,
which results in deterioration of the Higgs searches but the deviations of the
Higgs couplings can also allow for an enhancement of the gluon-fusion
production channel, leading to higher statistical significances. The search in
the H to gamma gamma channel can also be substantially improved due to an
enhancement of the branching fraction for the decay of the Higgs boson into a
pair of photons.Comment: 32 pages, 16 figure
Predictions for Higgs production at the Tevatron and the associated uncertainties
We update the theoretical predictions for the production cross sections of
the Standard Model Higgs boson at the Fermilab Tevatron collider, focusing on
the two main search channels, the gluon-gluon fusion mechanism and
the Higgs-strahlung processes with , including all
relevant higher order QCD and electroweak corrections in perturbation theory.
We then estimate the various uncertainties affecting these predictions: the
scale uncertainties which are viewed as a measure of the unknown higher order
effects, the uncertainties from the parton distribution functions and the
related errors on the strong coupling constant, as well as the uncertainties
due to the use of an effective theory approach in the determination of the
radiative corrections in the process at next-to-next-to-leading
order. We find that while the cross sections are well under control in the
Higgs--strahlung processes, the theoretical uncertainties are rather large in
the case of the gluon-gluon fusion channel, possibly shifting the central
values of the next-to-next-to-leading order cross sections by more than
. These uncertainties are thus significantly larger than the
error assumed by the CDF and D0 experiments in their recent
analysis that has excluded the Higgs mass range 162-166 GeV at the 95%
confidence level. These exclusion limits should be, therefore, reconsidered in
the light of these large theoretical uncertainties.Comment: 40 pages, 12 figures. A few typos are corrected and some updated
numbers are provide
NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders
We present details of a calculation of the cross section for hadronic
top-antitop production in next-to-leading order (NLO) QCD, including the decays
of the top and antitop into bottom quarks and leptons. This calculation is
based on matrix elements for \nu e e+ \mu- \bar{\nu}_{\mu}b\bar{b} production
and includes all non-resonant diagrams, interferences, and off-shell effects of
the top quarks. Such contributions are formally suppressed by the top-quark
width and turn out to be small in the inclusive cross section. However, they
can be strongly enhanced in exclusive observables that play an important role
in Higgs and new-physics searches. Also non-resonant and off-shell effects due
to the finite W-boson width are investigated in detail, but their impact is
much smaller than naively expected. We also introduce a matching approach to
improve NLO calculations involving intermediate unstable particles. Using a
fixed QCD scale leads to perturbative instabilities in the high-energy tails of
distributions, but an appropriate dynamical scale stabilises NLO predictions.
Numerical results for the total cross section, several distributions, and
asymmetries are presented for Tevatron and the LHC at 7 TeV, 8 TeV, and 14 TeV.Comment: 61 pp. Matches version published in JHEP; one more reference adde
Gauge-independent renormalization in the 2HDM
We present a consistent renormalization scheme for the CP-conserving
Two-Higgs-Doublet Model based on renormalization of the mixing
angles and the soft--symmetry-breaking scale in the Higgs sector.
This scheme requires to treat tadpoles fully consistently in all steps of the
calculation in order to provide gauge-independent -matrix elements. We show
how bare physical parameters have to be defined and verify the gauge
independence of physical quantities by explicit calculations in a general
-gauge. The procedure is straightforward and applicable to other
models with extended Higgs sectors. In contrast to the proposed scheme, the
renormalization of the mixing angles combined with popular
on-shell renormalization schemes gives rise to gauge-dependent results already
at the one-loop level. We present explicit results for electroweak NLO
corrections to selected processes in the appropriately renormalized
Two-Higgs-Doublet Model and in particular discuss their scale dependence.Comment: 52 pages, PDFLaTeX, PDF figures, JHEP version with Eq. (5.23)
correcte
Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector
Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model
