32 research outputs found
Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis
Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.
Progress in Diamond Detector Development
Detectors based on Chemical Vapor Deposition (CVD) diamond have been used successfully in Luminosity and Beam Condition Monitors (BCM) in the highest radiation areas of the LHC. Future experiments at CERN will accumulate an order of magnitude larger fluence. As a result, an enormous effort is underway to identify detector materials that can operate under fluences of 1 · 1016 n cm−2 and 1 · 1017 n cm−2. Diamond is one candidate due to its large displacement energy that enhances its radiation tolerance. Over the last 30 years the RD42 collaboration has constructed diamond detectors in CVD diamond with a planar geometry and with a 3D geometry to extend the material's radiation tolerance. The 3D cells in these detectors have a size of 50 µm×50 µm with columns of 2.6 µm in diameter and 100 µm×150 µm with columns of 4.6 µm in diameter. Here we present the latest beam test results from planar and 3D diamond pixel detectors
Proadrenomedullin-derived peptides as autocrine-paracrine regulators of cell growth
Proadrenomedullin (pADM)-derived peptides, adrenomedullin (ADM) and pADM N-terminal 20 peptide (PAMP), are hypotensive peptides, which are expressed, along with their receptors, in several tissues and organs, the function of which they regulate by acting in an autocrine-paracrine manner. Apart from their involvement in the regulation of blood pressure and fluid and electrolyte homeostasis, pADM-derived peptides appear to play a role in the modulation of cell and tissue growth. Evidence has been provided that ADM: 1) favors the remodeling of cardiovascular system under pathological conditions, by exerting an antiapoptotic effect on endothelial cells and an antiproliferogenic and antimigratory action on vascular smooth-muscle cells during neointimal hyperplasia, and by decreasing proliferation and protein synthesis of cardiac myocytes and fibroblasts. These last two effects are mediated by calcitonin gene-related peptide type 1 (CGRP1) receptors coupled to the adenylate cyclase (AC)/protein kinase (PK) A-dependent cascade; 2) inhibits proliferation and enhances apoptosis of kidney mesangial cells, through the modulation of mitogen-activated PK (MAPK) cascades; 3) stimulates proliferation of adrenal zona glomerulosa cells, acting via CGRP1 receptor coupled to the tyrosine kinase-dependent MAPK cascade, thereby possibly being involved in the maintenance and stimulation of adrenal growth; 4) enhances proliferation of skin and mucosa epithelial cells and fibroblasts, by activating CGRP1 receptor coupled to the AC/PKA signaling pathway; and 5) enhances proliferation of several tumor-cell lines through the activation of the AC/PKA cascade, which suggests a potential role for ADM as promoter of neoplastic growth. The growth effects of PAMP have been far less investigated: findings indicate that this peptide, like ADM, enhances adrenal zona glomerulosa-cell proliferation, and, in contrast with ADM, depresses DNA synthesis in some cancer-cell lines. Both pADM-derived peptides are thought to be involved in embryogenesis, such a contention being based on the demonstration of high pADM-gene expression during the crucial phases of organ growth and differentiation
An overview of international literature from cystic fibrosis registries: 1. Mortality and survival studies in cystic fibrosis. J Cyst Fibros. 2009; 8:229-37.
An overview of international literature from cystic fibrosis registries. Part 3. Disease incidence, genotype/phenotype correlation, microbiology, pregnancy, clinical complications, lung transplantation, and miscellanea.
Role of the Endogenous Adrenomedullin System in Regulating the Secretion and Growth of Rat Adrenal Cortex
1H, 15N, and 13C resonance assignments and secondary structure of the SWIRM domain of human BAF155, a chromatin remodeling complex component
New test beam results of 3D and pad detectors constructed with poly-crystalline CVD diamond
Chemical Vapour Deposition (CVD) diamond is being considered as a material for particle detectors in a harsh radiation environment. This article presents beam test results of 3D pixel detectors fabricated with poly-crystalline CVD diamonds. The cells of the devices had a size of 50µm×50µm with columns 2.6µm in diameter. The cells were ganged in a 3×2 and 5×1 pattern to match the layouts of the pixel read-out electronics currently used in the CMS and ATLAS experiments at the Large Hadron Collider, respectively. In beam tests, using tracks reconstructed with a high precision tracking telescope, a tracking efficiency of 99.3% was achieved. The efficiency of both devices plateaus at a bias voltage of 30V. Also irradiated poly-crystalline CVD diamond pad detectors were investigated. In high rate beam tests with particle fluxes up to 20MHz/cm2 and irradiations up to 8 ⋅ 1015n/cm2 it was shown that the pulse height of irradiated poly-crystalline CVD diamonds does not depend on flux to the O2%
LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3
Cellular uptake of vitamin A, production of visual chromophore, and triglyceride homeostasis in adipocytes depend on two representatives of the vertebrate N1pC/P60 protein family, lecithin:retinol acyltransferase (LRAT) and HRAS-like tumor suppressor 3 (HRASLS3). Both proteins function as lipid-metabolizing enzymes but differ in their substrate preferences and dominant catalytic activity. The mechanism of this catalytic diversity is not understood. Here, by using a gain-of-function approach, we identified a specific sequence responsible for the substrate specificity of N1pC/P60 proteins. A 2.2 Å crystal structure of HRASLS3/LRAT chimeric enzyme in a thioester catalytic intermediate state revealed a major structural rearrangement accompanied by 3D-domain swapping dimerization not observed in native HRASLS proteins. Structural changes affecting the active site environment contributed to slower hydrolysis of the catalytic intermediate supporting efficient acyl transfer. These findings reveal structural adaption that facilitates selective catalysis and mechanism responsible for diverse substrate specificity within the LRAT-like enzyme family
