223 research outputs found
Measurement of CP asymmetry in D-0 -> K- K+ and D-0 -> pi(-) pi(+) decays
Time-integrated CP asymmetries in D-0 decays to the final states K- K+ and pi(-) pi(+) are measured using proton-proton collisions corresponding to 3 fb(-1) of integrated luminosity collected at centre-of-mass energies of 7 TeV and 8 TeV. The D-0 mesons are produced in semileptonic b-hadron decays, where the charge of the accompanying muon is used to determine the initial flavour of the charm meson. The difference in CP asymmetries between the two final states is measured to be Delta A(CP) = A(CP)(K- K+) ¿ A(CP)(pi(-) pi(+)) = (+0.14 +/- 0.16 (stat) +/- 0.08 (syst))% . A measurement of A(CP)(K- K+) is obtained assuming negligible CP violation in charm mixing and in Cabibbo-favoured D decays. It is found to be A(CP)(K- K+) = (-0.06 +/- 0.15 (stat) +/- 0.10 (syst))% , where the correlation coefficient between Delta A(CP) and A(CP)(K- K+) is rho = 0.28. By combining these results, the CP asymmetry in the D-0 -> pi(-) pi(+) channel is A(CP)(pi(-) pi(+)) = (-0.20 +/- 0.19 (stat) +/- 0.10 (syst))%
Karyological study of Amphisbaena ridleyi (Squamata, Amphisbaenidae), an endemic species of the Archipelago of Fernando de Noronha, Pernambuco, Brazil
Invasive aspergillosis in a user of inhaled cocaine: rhinosinusitis with bone and cartilage destruction
Breathing adapted radiotherapy: a 4D gating software for lung cancer
<p>Abstract</p> <p>Purpose</p> <p>Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose.</p> <p>Methods and Materials</p> <p>Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT.</p> <p>Results</p> <p>Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case.</p> <p>Conclusions</p> <p>The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.</p
Ovarian cancer immunotherapy: opportunities, progresses and challenges
Due to the low survival rates from invasive ovarian cancer, new effective treatment modalities are urgently needed. Compelling evidence indicates that the immune response against ovarian cancer may play an important role in controlling this disease. We herein summarize multiple immune-based strategies that have been proposed and tested for potential therapeutic benefit against advanced stage ovarian cancer. We will examine the evidence for the premise that an effective therapeutic vaccine against ovarian cancer is useful not only for inducing remission of the disease but also for preventing disease relapse. We will also highlight the questions and challenges in the development of ovarian cancer vaccines, and critically discuss the limitations of some of the existing immunotherapeutic strategies. Finally, we will summarize our own experience on the use of patient-specific tumor-derived heat shock protein-peptide complex for the treatment of advanced ovarian cancer
Exceptionally high incidence of symptomatic grade 2–5 radiation pneumonitis after stereotactic radiation therapy for lung tumors
<p>Abstract</p> <p>Background</p> <p>To determine the usefulness of dose volume histogram (DVH) factors for predicting the occurrence of radiation pneumonitis (RP) after application of stereotactic radiation therapy (SRT) for lung tumors, DVH factors were measured before irradiation.</p> <p>Methods</p> <p>From May 2004 to April 2006, 25 patients were treated with SRT at the University of Tokyo Hospital. Eighteen patients had primary lung cancer and seven had metastatic lung cancer. SRT was given in 6–7 fields with an isocenter dose of 48 Gy in four fractions over 5–8 days by linear accelerator.</p> <p>Results</p> <p>Seven of the 25 patients suffered from RP of symptomatic grade 2–5 according to the NCI-CTC version 3.0. The overall incidence rate of RP grade2 or more was 29% at 18 months after completing SRT and three patients died from RP. RP occurred at significantly increased frequencies in patients with higher conformity index (CI) (p = 0.0394). Mean lung dose (MLD) showed a significant correlation with V<sub>5</sub>–V<sub>20 </sub>(irradiated lung volume) (p < 0.001) but showed no correlation with CI. RP did not statistically correlate with MLD. MLD had the strongest correlation with V<sub>5</sub>.</p> <p>Conclusion</p> <p>Even in SRT, when large volumes of lung parenchyma are irradiated to such high doses as the minimum dose within planning target volume, the incidence of lung toxicity can become high.</p
Tunneling Spectra of Individual Magnetic Endofullerene Molecules
The manipulation of single magnetic molecules may enable new strategies for
high-density information storage and quantum-state control. However, progress
in these areas depends on developing techniques for addressing individual
molecules and controlling their spin. Here we report success in making
electrical contact to individual magnetic N@C60 molecules and measuring spin
excitations in their electron tunneling spectra. We verify that the molecules
remain magnetic by observing a transition as a function of magnetic field which
changes the spin quantum number and also the existence of nonequilibrium
tunneling originating from low-energy excited states. From the tunneling
spectra, we identify the charge and spin states of the molecule. The measured
spectra can be reproduced theoretically by accounting for the exchange
interaction between the nitrogen spin and electron(s) on the C60 cage.Comment: 7 pages, 4 figures. Typeset in LaTeX, updated text of previous
versio
Polymorphisms of Homologous Recombination Genes and Clinical Outcomes of Non-Small Cell Lung Cancer Patients Treated with Definitive Radiotherapy
The repair of DNA double-strand breaks (DSBs) is the major mechanism to maintain genomic stability in response to irradiation. We hypothesized that genetic polymorphisms in DSB repair genes may affect clinical outcomes among non-small cell lung cancer (NSCLC) patients treated with definitive radio(chemo)therapy. We genotyped six potentially functional single nucleotide polymorphisms (SNPs) (i.e., RAD51 −135G>C/rs1801320 and −172G>T/rs1801321, XRCC2 4234G>C/rs3218384 and R188H/rs3218536 G>A, XRCC3 T241M/rs861539 and NBN E185Q/rs1805794) and estimated their associations with overall survival (OS) and radiation pneumonitis (RP) in 228 NSCLC patients. We found a predictive role of RAD51 −135G>C SNP in RP development (adjusted hazard ratio [HR] = 0.52, 95% confidence interval [CI], 0.31–0.86, P = 0.010 for CG/CC vs. GG). We also found that RAD51 −135G>C and XRCC2 R188H SNPs were independent prognostic factors for overall survival (adjusted HR = 1.70, 95% CI, 1.14–2.62, P = 0.009 for CG/CC vs. GG; and adjusted HR = 1.70; 95% CI, 1.02–2.85, P = 0.043 for AG vs. GG, respectively) and that the SNP-survival association was most pronounced in the presence of RP. Our study suggests that HR genetic polymorphisms, particularly RAD51 −135G>C, may influence overall survival and radiation pneumonitis in NSCLC patients treated with definitive radio(chemo)therapy. Large studies are needed to confirm our findings
BubR1 as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers
BACKGROUND: Epithelial ovarian cancer is one of the most lethal malignancies, and has a high recurrence rate. Thus, prognostic markers
for recurrence are crucial for the care of ovarian cancer. As ovarian cancers frequently exhibit chromosome instability, we aimed at
assessing the prognostic significance of two key mitotic kinases, BubR1 and Aurora A.
METHODS: We analysed paraffin-embedded tissue sections from 160 ovarian cancer patients whose clinical outcomes had been
tracked after first-line treatment.
RESULTS: The median recurrence-free survival in patients with a positive and negative expression of BubR1 was 27 and 83 months,
respectively (Po0.001). A positive BubR1 expression was also associated with advanced stage, serous histology and high grade.
In contrast, Aurora A immunostaining did not correlate with any of the clinical parameters analysed.
CONCLUSION: BubR1, but not Aurora A, is a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers.Research in the H Lee laboratory is funded by the National
Research Laboratory Program from the Korean ministry of
Education and Science (ROA-2008-000-20023-0). This work was
also supported by the Seoul National University Hospital Grant
(0420080450), the 21C Frontier Functional Genome Project (FG06-
2-14) of the Korean ministry of Education and Science, Korea
Research Foundation (KRF-2005-C00097), and the National R&D
Program for Cancer Control (0620070) from the Korean ministry
of Health welfare and Family Affairs. Imaging facilities in the H Lee
laboratory are funded by RCFC (R11-2005-009-04003-0) of the SRC
program from KOSEF
- …
