15 research outputs found
Intestinal Microbiota Shifts towards Elevated Commensal Escherichia coli Loads Abrogate Colonization Resistance against Campylobacter jejuni in Mice
Background: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. Methodology/Principal Findings: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. Conclusion/Significance: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiot
Risk of inflammatory bowel disease following a diagnosis of irritable bowel syndrome
<p>Abstract</p> <p>Background</p> <p>Irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) symptoms often overlap. In some IBS cases there are subtle inflammatory changes similar to the immune-mediated pathophysiology of IBD, and the risk of both increases after infectious gastroenteritis (IGE).</p> <p>Methods</p> <p>To evaluate the effect of IBS and IGE on IBD risk utilizing US Department of Defense medical encounter data, active duty personnel with IBS were matched to subjects without IBS. Medical encounter history was analyzed to assess for incident IBD. IGE was identified from documented medical encounters and by self-report. Relative risks were calculated using Poisson regression models.</p> <p>Results</p> <p>We identified 9,341 incident IBS cases and 18,678 matched non-IBS subjects and found an 8.6-fold higher incidence (<it>p</it> < 0.0001) of IBD among those with IBS (238.1 per 100,000 person-years) compared to our referent population (27.8 per 100,000 person-years). In a subset (n = 2,205) of well-defined IBS cases, IBD risk was 15 times that of subjects without IBS. The median time between IBS and IBD diagnoses was 2.1 years. IGE also increased IBD risk approximately 2-fold ( <it>p</it> < 0.05) after controlling for IBS.</p> <p>Conclusions</p> <p>These data reflect a complex interaction between illness presentation and diagnosis of IBS and IBD and suggest intercurrent IGE may increase IBD risk in IBS patients. Additional studies are needed to determine whether IBS lies on the causal pathway for IBD or whether the two are on a pathophysiological spectrum of the same clinical illness. These data suggest consideration of risk reduction interventions for IGE among IBS patients at high disease risk.</p
Infection Efficiency of Four Phytophthora infestans Clonal Lineages and DNA-Based Quantification of Sporangia
Symptomatic and Asymptomatic Campylobacter Infections Associated with Reduced Growth in Peruvian Children
Characterization by Small RNA Sequencing of Taro Bacilliform CH Virus (TaBCHV), a Novel Badnavirus
RNA silencing is an antiviral immunity that regulates gene expression through the production of small RNAs (sRNAs). In this study, deep sequencing of small RNAs was used to identify viruses infecting two taro plants. Blast searching identified five and nine contigs assembled from small RNAs of samples T1 and T2 matched onto the genome sequences of badnaviruses in the family Caulimoviridae. Complete genome sequences of two isolates of the badnavirus determined by sequence specific amplification comprised of 7,641 nucleotides and shared overall nucleotide similarities of 44.1%‒55.8% with other badnaviruses. Six open reading frames (ORFs) were identified on the plus strand, showed amino acid similarities ranging from 59.8% (ORF3) to 10.2% (ORF6) to the corresponding proteins encoded by other badnaviruses. Phylogenetic analysis also supports that the virus is a new member in the genus Badnavirus. The virus is tentatively named as Taro bacilliform CH virus (TaBCHV), and it is the second badnavirus infecting taro plants, following Taro bacilliform virus (TaBV). In addition, analyzes of viral derived small RNAs (vsRNAs) from TaBCHV showed that almost equivalent number of vsRNAs were generated from both strands and the most abundant vsRNAs were 21 nt, with uracil bias at 5' terminal. Furthermore, TaBCHV vsRNAs were asymmetrically distributed on its entire circular genome at both orientations with the hotspots mainly generated in the ORF5 region
