413 research outputs found

    Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein. It does so by integrating predictions of proteasomal cleavage, TAP transport efficiency, and MHC class I affinity. At least four other methods have been developed recently that likewise attempt to predict CTL epitopes: EpiJen, MAPPP, MHC-pathway, and WAPP. In order to compare the performance of prediction methods, objective benchmarks and standardized performance measures are needed. Here, we develop such large-scale benchmark and corresponding performance measures and report the performance of an updated version 1.2 of NetCTL in comparison with the four other methods.</p> <p>Results</p> <p>We define a number of performance measures that can handle the different types of output data from the five methods. We use two evaluation datasets consisting of known HIV CTL epitopes and their source proteins. The source proteins are split into all possible 9 mers and except for annotated epitopes; all other 9 mers are considered non-epitopes. In the RANK measure, we compare two methods at a time and count how often each of the methods rank the epitope highest. In another measure, we find the specificity of the methods at three predefined sensitivity values. Lastly, for each method, we calculate the percentage of known epitopes that rank within the 5% peptides with the highest predicted score.</p> <p>Conclusion</p> <p>NetCTL-1.2 is demonstrated to have a higher predictive performance than EpiJen, MAPPP, MHC-pathway, and WAPP on all performance measures. The higher performance of NetCTL-1.2 as compared to EpiJen and MHC-pathway is, however, not statistically significant on all measures. In the large-scale benchmark calculation consisting of 216 known HIV epitopes covering all 12 recognized HLA supertypes, the NetCTL-1.2 method was shown to have a sensitivity among the 5% top-scoring peptides above 0.72. On this dataset, the best of the other methods achieved a sensitivity of 0.64. The NetCTL-1.2 method is available at <url>http://www.cbs.dtu.dk/services/NetCTL</url>.</p> <p>All used datasets are available at <url>http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php</url>.</p

    Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research

    Get PDF
    This paper discusses the role and relevance of the shared socioeconomic pathways (SSPs) and the new scenarios that combine SSPs with representative concentration pathways (RCPs) for climate change impacts, adaptation, and vulnerability (IAV) research. It first provides an overview of uses of social–environmental scenarios in IAV studies and identifies the main shortcomings of earlier such scenarios. Second, the paper elaborates on two aspects of the SSPs and new scenarios that would improve their usefulness for IAV studies compared to earlier scenario sets: (i) enhancing their applicability while retaining coherence across spatial scales, and (ii) adding indicators of importance for projecting vulnerability. The paper therefore presents an agenda for future research, recommending that SSPs incorporate not only the standard variables of population and gross domestic product, but also indicators such as income distribution, spatial population, human health and governance

    The impact of language barriers on trust formation in multinational teams

    Get PDF
    This study systematically investigates how language barriers influence trust formation in multinational teams (MNTs). Based on 90 interviews with team members, team leaders, and senior managers in 15 MNTs in three German automotive corporations, we show how MNT members’ cognitive and emotional reactions to language barriers influence their perceived trustworthiness and intention to trust, which in turn affect trust formation. We contribute to diversity research by distinguishing the exclusively negative language effects from the more ambivalent effects of other diversity dimensions. Our findings also illustrate how surface-level language diversity may create perceptions of deep-level diversity. Furthermore, our study advances MNT research by revealing the specific influences of language barriers on team trust, an important mediator between team inputs and performance outcomes. It thereby encourages the examination of other team processes through a language lens. Finally, our study suggests that multilingual settings necessitate a reexamination and modification of the seminal trust theories by Mayer, Davis and Schoorman (1995) and McAllister (1995). In terms of practical implications, we outline how MNT leaders can manage their subordinates’ problematic reactions to language barriers and how MNT members can enhance their perceived trustworthiness in multilingual settings

    Re-cycling paradigms: cell cycle regulation in adult hippocampal neurogenesis and implications for depression

    Get PDF
    Since adult neurogenesis became a widely accepted phenomenon, much effort has been put in trying to understand the mechanisms involved in its regulation. In addition, the pathophysiology of several neuropsychiatric disorders, such as depression, has been associated with imbalances in adult hippocampal neurogenesis. These imbalances may ultimately reflect alterations at the cell cycle level, as a common mechanism through which intrinsic and extrinsic stimuli interact with the neurogenic niche properties. Thus, the comprehension of these regulatory mechanisms has become of major importance to disclose novel therapeutic targets. In this review, we first present a comprehensive view on the cell cycle components and mechanisms that were identified in the context of the homeostatic adult hippocampal neurogenic niche. Then, we focus on recent work regarding the cell cycle changes and signaling pathways that are responsible for the neurogenesis imbalances observed in neuropathological conditions, with a particular emphasis on depression

    Disruption of STAT3 signaling promotes KRAS induced lung tumorigenesis

    Get PDF
    STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased KrasG12D-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-B-induced IL-8 expression by sequestering NF-B within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3NF-BIL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance.P 25599(VLID)183891

    Magnetic increases with central current sheets: Observations with Parker Solar Probe

    Get PDF
    Aims. We report the observation by Parker Solar Probe (PSP) of magnetic structures in the solar wind that present a strong peak in their magnetic field magnitude with an embedded central current sheet. Similar structures have been observed, either at the Earth’s magnetopause and called interlinked flux tubes, or in the solar wind and called interplanetary field enhancements. Methods. In this work, we first investigate two striking events in detail; one occurred in the regular slow solar wind on November 2, 2018 and the other was observed during a heliospheric current sheet crossing on November 13, 2018. They both show the presence of a central current sheet with a visible ion jet and general characteristics consistent with the occurrence of magnetic reconnection. We then performed a survey of PSP data from encounters 1 to 4 and find 18 additional events presenting an increase in the magnetic field magnitude of over 30% and a central current sheet. We performed a statistical study on the 20 "magnetic increases with central current sheet" (MICCS), with 13 observed in the regular slow solar wind with a constant polarity (i.e., identical strahl direction), and 7 which were specifically observed near a heliospheric current sheet (HCS) crossing. Results. We analyze and discuss the general properties of the structures, including the duration, location, amplitude, and magnetic topology, as well as the characteristics of their central current sheet. We find that the latter has a preferential orientation in the TN plane of the RTN frame. We also find no significant change in the dust impact rate in the vicinity of the MICCS under study, leading us to conclude that dust probably plays no role in the MICCS formation and evolution. Our findings are overall consistent with a double flux tube-configuration that would result from initially distinct flux tubes which interact during solar wind propagation

    Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe

    Get PDF
    Aims. We studied the properties and occurrence of narrowband whistler waves and their interaction with strahl electrons observed between 0.17 and 0.26 au during the first encounter of Parker Solar Probe. Methods. We used Digital Fields Board band-pass filtered (BPF) data from FIELDS to detect the signatures of whistler waves. Additionally parameters derived from the particle distribution functions measured by the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite were used to investigate the plasma properties, and FIELDS suite measurements were used to investigate the electromagnetic (EM) fields properties corresponding to the observed whistler signatures. Results. We observe that the occurrence of whistler waves is low, nearly ~1.5% and less than 0.5% in the analyzed peak and average BPF data, respectively. Whistlers occur highly intermittently and 80% of the whistlers appear continuously for less than 3 s. The spacecraft frequencies of the analyzed waves are less than 0.2 electron cyclotron frequency (fce). The occurrence rate of whistler waves was found to be anticorrelated with the solar wind bulk velocity. The study of the duration of the whistler intervals revealed an anticorrelation between the duration and the solar wind velocity, as well as between the duration and the normalized amplitude of magnetic field variations. The pitch-angle widths (PAWs) of the field-aligned electron population referred to as the strahl are broader by at least 12 degrees during the presence of large amplitude narrowband whistler waves. This observation points toward an EM wave electron interaction, resulting in pitch-angle scattering. PAWs of strahl electrons corresponding to the short duration whistlers are higher compared to the long duration whistlers, indicating short duration whistlers scatter the strahl electrons better than the long duration ones. Parallel cuts through the strahl electron velocity distribution function (VDF) observed during the whistler intervals appear to depart from the Maxwellian shape typically found in the near-Sun strahl VDFs. The relative decrease in the parallel electron temperature and the increase in PAW for the electrons in the strahl energy range suggests that the interaction with whistler waves results in a transfer of electron momentum from the parallel to the perpendicular direction

    Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions

    Get PDF
    The solar wind escapes from the solar corona and is accelerated, over a short distance, to its terminal velocity. The energy balance associated with this acceleration remains poorly understood. To quantify the global electrostatic contribution to the solar wind dynamics, we empirically estimate the ambipolar electric field (E∥) and potential (Φr,∞). We analyze electron velocity distribution functions (VDFs) measured in the near-Sun solar wind between 20.3 RS and 85.3 RS by the Parker Solar Probe. We test the predictions of two different solar wind models. Close to the Sun, the VDFs exhibit a suprathermal electron deficit in the sunward, magnetic-field-aligned part of phase space. We argue that the sunward deficit is a remnant of the electron cutoff predicted by collisionless exospheric models. This cutoff energy is directly linked to Φr,∞. Competing effects of E∥ and Coulomb collisions in the solar wind are addressed by the Steady Electron Runaway Model (SERM). In this model, electron phase space is separated into collisionally overdamped and underdamped regions. We assume that this boundary velocity at small pitch angles coincides with the strahl break-point energy, which allows us to calculate E∥. The obtained Φr,∞ and E∥ agree well with theoretical expectations. They decrease with radial distance as power-law functions with indices αΦ = −0.66 and αE = −1.69. We finally estimate the velocity gained by protons from electrostatic acceleration, which equals 77% calculated from the exospheric models, and 44% from the SERM model

    Magnetic connectivity of the ecliptic plane within 0.5 AU : PFSS modeling of the first PSP encounter

    Get PDF
    We compare magnetic field measurements taken by the FIELDS instrument on Parker Solar Probe (PSP) during its first solar encounter to predictions obtained by Potential Field Source Surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with PSPs first observations of the heliospheric magnetic field from 0.5 AU (107.5 Rs) down to 0.16 AU (35.7 Rs). Further, we show the robustness of the agreement is improved both by allowing the photospheric input to the model to vary in time, and by advecting the field from PSP down to the PFSS model domain using in situ PSP/SWEAP measurements of the solar wind speed instead of assuming it to be constant with longitude and latitude. We also explore the source surface height parameter (RSS) to the PFSS model finding that an extraordinarily low source surface height (1.3-1.5Rs) predicts observed small scale polarity inversions which are otherwise washed out with regular modeling parameters. Finally, we extract field line traces from these models. By overlaying these on EUV images we observe magnetic connectivity to various equatorial and mid-latitude coronal holes indicating plausible magnetic footpoints and offering context for future discussions of sources of the solar wind measured by PSP
    corecore