216 research outputs found

    Phenomenology of Light Sneutrino Dark Matter in cMSSM/mSUGRA with Inverse Seesaw

    Full text link
    We study the possibility of a light Dark Matter (DM) within a constrained Minimal Supersymmetric Standard Model (cMSSM) framework augmented by a SM singlet-pair sector to account for the non-zero neutrino masses by inverse seesaw mechanism. Working within a 'hybrid' scenario with the MSSM sector fixed at high scale and the singlet neutrino sector at low scale, we find that, contrary to the case of the usual cMSSM where the neutralino DM cannot be very light, we can have a light sneutrino DM with mass below 100 GeV satisfying all the current experimental constraints from cosmology, collider as well as low-energy experiments. We also note that the supersymmetric inverse seesaw mechanism with sneutrino as the lightest supersymmetric partner can have enhanced same-sign dilepton final states with large missing transverse energy (mET) coming from the gluino- and squark-pair as well as the squark-gluino associated productions and their cascade decay through charginos. We present a collider study for the same-sign dilepton+jets+mET signal in this scenario and propose some distinctions with the usual cMSSM. We also comment on the implications of such a light DM scenario on the invisible decay width of an 125 GeV Higgs boson.Comment: 24 pages, 4 figures, 7 tables; matches published versio

    Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements

    Get PDF
    International audienceVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements

    Individual-environment interactions in swimming: The smallest unit for analysing the emergence of coordination dynamics in performance?

    Get PDF
    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer’s movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers’ actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers’ movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamical interactions in competitive swimming within the theoretical framework of ecological dynamics

    Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Get PDF
    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range

    Coordination in climbing: effect of skill, practice and constraints manipulation

    Get PDF
    BACKGROUND: Climbing is a physical activity and sport involving many subdisciplines. Minimization of prolonged pauses, use of a relatively simple path through a route and smooth transitions between movements broadly define skilled coordination in climbing. OBJECTIVES: To provide an overview of the constraints on skilled coordination in climbing and to explore future directions in this emerging field. METHODS: A systematic literature review was conducted in 2014 and retrieved studies reporting perceptual and movement data during climbing tasks. To be eligible for the qualitative synthesis, studies were required to report perceptual or movement data during climbing tasks graded for difficulty. RESULTS: Qualitative synthesis of 42 studies was carried out, showing that skilled coordination in climbing is underpinned by superior perception of climbing opportunities; optimization of spatial-temporal features pertaining to body-to-wall coordination, the climb trajectory and hand-to-hold surface contact; and minimization of exploratory behaviour. Improvements in skilled coordination due to practice are related to task novelty and the difficulty of the climbing route relative to the individual's ability level. CONCLUSION: Perceptual and motor adaptations that improve skilled coordination are highly significant for improving the climbing ability level. Elite climbers exhibit advantages in detection and use of climbing opportunities when visually inspecting a route from the ground and when physically moving though a route. However, the need to provide clear guidelines on how to improve climbing skill arises from uncertainties regarding the impacts of different practice interventions on learning and transfer

    The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp

    Get PDF
    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities

    The Impact of Case Diagnosis Coverage and Diagnosis Delays on the Effectiveness of Antiviral Strategies in Mitigating Pandemic Influenza A/H1N1 2009

    Get PDF
    BACKGROUND: Neuraminidase inhibitors were used to reduce the transmission of pandemic influenza A/H1N1 2009 at the early stages of the 2009/2010 pandemic. Policies for diagnosis of influenza for the purposes of antiviral intervention differed markedly between and within countries, leading to differences in the timing and scale of antiviral usage. METHODOLOGY/PRINCIPAL FINDINGS: The impact of the percentage of symptomatic infected individuals who were diagnosed, and of delays to diagnosis, for three antiviral intervention strategies (each with and without school closure) were determined using a simulation model of an Australian community. Epidemic characteristics were based on actual data from the A/H1N1 2009 pandemic including reproduction number, serial interval and age-specific infection rate profile. In the absence of intervention an illness attack rate (AR) of 24.5% was determined from an estimated R(0) of 1.5; this was reduced to 21%, 16.5% or 13% by treatment-only, treatment plus household prophylaxis, or treatment plus household plus extended prophylaxis antiviral interventions respectively, assuming that diagnosis occurred 24 hours after symptoms arose and that 50% of symptomatic cases were diagnosed. If diagnosis occurred without delay, ARs decreased to 17%, 12.2% or 8.8% respectively. If 90% of symptomatic cases were diagnosed (with a 24 hour delay), ARs decreased to 17.8%, 11.1% and 7.6%, respectively. CONCLUSION: The ability to rapidly diagnose symptomatic cases and to diagnose a high proportion of cases was shown to improve the effectiveness of all three antiviral strategies. For epidemics with R(0)< = 1.5 our results suggest that when the case diagnosis coverage exceeds ∼70% the size of the antiviral stockpile required to implement the extended prophylactic strategy decreases. The addition of at least four weeks of school closure was found to further reduce cumulative and peak attack rates and the size of the required antiviral stockpile

    Analysis of the effectiveness of interventions used during the 2009 A/H1N1 influenza pandemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Following the emergence of the A/H1N1 2009 influenza pandemic, public health interventions were activated to lessen its potential impact. Computer modelling and simulation can be used to determine the potential effectiveness of the social distancing and antiviral drug therapy interventions that were used at the early stages of the pandemic, providing guidance to public health policy makers as to intervention strategies in future pandemics involving a highly pathogenic influenza strain.</p> <p>Methods</p> <p>An individual-based model of a real community with a population of approximately 30,000 was used to determine the impact of alternative interventions strategies, including those used in the initial stages of the 2009 pandemic. Different interventions, namely school closure and antiviral strategies, were simulated in isolation and in combination to form different plausible scenarios. We simulated epidemics with reproduction numbers R<sub>0</sub>of 1.5, which aligns with estimates in the range 1.4-1.6 determined from the initial outbreak in Mexico.</p> <p>Results</p> <p>School closure of 1 week was determined to have minimal effect on reducing overall illness attack rate. Antiviral drug treatment of 50% of symptomatic cases reduced the attack rate by 6.5%, from an unmitigated rate of 32.5% to 26%. Treatment of diagnosed individuals combined with additional household prophylaxis reduced the final attack rate to 19%. Further extension of prophylaxis to close contacts (in schools and workplaces) further reduced the overall attack rate to 13% and reduced the peak daily illness rate from 120 to 22 per 10,000 individuals. We determined the size of antiviral stockpile required; the ratio of the required number of antiviral courses to population was 13% for the treatment-only strategy, 25% for treatment and household prophylaxis and 40% for treatment, household and extended prophylaxis. Additional simulations suggest that coupling school closure with the antiviral strategies further reduces epidemic impact.</p> <p>Conclusions</p> <p>These results suggest that the aggressive use of antiviral drugs together with extended school closure may substantially slow the rate of influenza epidemic development. These strategies are more rigorous than those actually used during the early stages of the relatively mild 2009 pandemic, and are appropriate for future pandemics that have high morbidity and mortality rates.</p

    Option selection in whole-body rotation movements in gymnastics

    Get PDF
    Abstract When a gymnast performs a somersault, the linear and angular momentum along with a particular control of inertia during the flight phase constrain the possibilities for action. Given the complexity and dynamic nature of the human moving system, one could argue that there exist a particular amount of stable coordination states when performing somersaults. The goal of this study was to explore the manifold of movement options and coordination states along with their differentiating parameters for a single somersault in gymnastics based on a simple mathematical model reflecting gymnast’s rotation behavior during the flight phase. Biomechanical parameters determining rotation behavior during a somersault were systematically varied with regard to a particular set of biomechanical constraints defining a successful somersault performance. Batch simulations revealed that from 10229760 simulation cycles only 655346 (approximately 6.41%) led to successful somersault performance. A subsequent analysis of the movement option landscape for the optimum angular momentum revealed ten coordination states for a single somersault that could be clearly distinguished based on the simulation parameters. Taken the results together, it becomes apparent that it may be most advisable to perform a single somersault with a larger moment of inertia when achieving the tucked position, a longer duration to achieve the tucked position, a longer duration of staying tucked, and an intermediate moment of inertia during landing. This strategy comprises the largest amount of movement options associated with an upright landing and thus the highest probability of success when performing a single somersault
    corecore